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0. Cosmological perturbation theory
Methods:

e Relativistic:
1. Einstein equations (Lifshitz 1946)
2. Covariant equations (1 + 3, @,: Hawking 1966)
3. ADM equations (3 + 1, n,; Bardeen 1980)
4. Action formulation (Lukash 1980; Mukhanov 1988)

e Newtonian:
1. Hydrodynamic equations (Bonnor 1957)
% Relativistic-Newtonian correspondence in the zero-pressure case.
* True even to the second order!
Three perturbation types:
1. Scalar-type: density fluctuations
2. Vector-type: rotation
3. Tensor-type: gravitational wave
* To linear-order, decouple in Friedmann background
% Couple to the second order!

Classical Evolution:
1. Scalar-type: super-sound-horizon scale conservation

2. Rotation: angular momentum conservation
3. Gravitational wave: super-horizon scale conservation
% True even to the second order!




“The theory of linear (i.e., small) perturbations of the expanding, isotropic, and ho-
mogeneous Friedmann cosmology springs into existence virtually full-grown with the
work of Lifshitz (1946).”

Press and Vishniac (1980)



Evgent Mikhatlovich Lifshitz (15 -1935)
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Why linear theory?:

1. The CMB temperature and polarization anisotropies are very small % ~ 107,

2. The large-scale clustering of galaxies are approximately linear as the scale becomes large.
Our own homogeneous and isotropic background world model relies on this assumption.

Observations are not inconsistent with the assumption.

If the fluctuation is on ~ 107 level, Taylor’s series theorem guarantees the non-linear terms
are small ~ 10710,

Still, considering that the basic equations are fully nonlinear the nonlinearities exist always.
The point is whether we can ignore (or tolerate) the level of nonlinearities.

It looks we may currently assume linearity in the early universe and in the large-scale in the
present era.

If the situation is linear, then we can handle both physics and mathematics very reliably.

“The evolution of linear perturbations of FRW models has been discussed by a large
number of authors and is very nearly a closed book.”

George Efstathiou (1989)



“Do I dare disturb the universe?””

T. S. Eliot (1888-1965)

Perturbed Friedmann world model:

Metric:
ds* = —a’ (1 + 2a) dn* — 2a* (5.4 + BY)dndx®
+a? [gfj, (L+20) + 2705 + 20! fﬂ +20¢ ] da®dz”. (1)
Energy momentum tensor:
I§ = —p—op, T0=(u+p)(—va+ol), T =(p+op)df+IIj 2)

Linear perturbation assumes all perturbation variables are small.
Thus, ignore any quadratic and higher-order combination of perturbation variables.

“the linear perturbations are so surprisingly simple that a perturbation analysis accu-
rate to second order may be feasible ...”

Sachs and Wolfe (1967)
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Perturbed action: (Lukash 1980; Mukhanov 1988)

y 1
028 = = /aSQ ( P? — (4—@ “q){,) dtd’z, (3)

where
’ +p L) 2 :
® = o, Q) = ({f 73— c;  (fluid)
12 .

Q)
Ll e=CY), Q=% &—1 (GW)

Yy = @ —aHv and @54 = @ — —(5q§ gauge-invariant combinations.

* Generalized gravity theories as well!

Equation of motion (Field-Shepley 1968) v = 2P and z = a/Q:

1 5 A 1 2
30 ((LiQQ) —c 4;<b == {n" - (; + (‘iA) ’U:| = (4)

Large-scale solution:

(6] |
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Compared with quantum field in curved space:

Equation of motion:  ¢(x,t) = ¢(t) + do(x, t)

. A
¢+3H¢—G—Q¢+V.m=&

e

quantum field in curved space

. . A Hi.. H. .9
5, + 3HOG, + [ = W (3H =Et 2-;-)]5% —. .
- a~ J H H @)
without metric pert. from 111(‘t.1‘i:rﬂ11('t1mtion

H

Exponential a o< ¢!, or Power-law a o t* expansions:

. A,
by, + 3HS), — =5, =0 & QFCS.
al_

Compact form:

H | (H_ \| A
— | (=60, ) | — 560, =0,
(_1;5@ H 0, a
Large-scale general solution:
H. ' H?
Pop = ____,()d)‘: — C(X) o D(X) / 5 dt .
o) . Jo a’3¢? )
t ra];;(mt

% Proper choice of the gauge (equivalently, gauge-invariant combination) is important!

'Phys. Rev. D, 48, 3544 (1993); Class. Quant. Grav. 11, 2305 (1994)
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Generalized f(¢, R) gravity: !

Introduce:
1

- = 1 T = ~
L= Ef((/b R) _ 5&0(@)(/)'”'(/5‘(1 - V(¢) + Lm-

of

Special cases: F' = 55,

ignoring tildes

Minimally coupled scalar field
Nonminimally coupled scalar field
Brans-Dicke theory

Generalizes scalar-tensor theory
Induced gravity

R? gravity

F(¢)R gravity

f(R) gravity

Low-energy string theory

L= _)_ - 2(5”@” _V( )
L=gz(r?- 6052)  — 2P0 — V()
L=¢R—w®?

L= 6R — w(é) ™2~ V(6)

L =1e4?R — 14, — IA(¢2 — v2)?
b= % (R o{f;z)

L =3F($)R — 30(4)¢"da — V()
L=3f(R)

L =3¢ (R+¢",)

Conformally equivalent to Einstein’s theory.

'Class. Quant. Grav. 7, 1613 (1990).



Unified Analyses in Generalized f(¢, R) gravity: >

N _ 1 - - - N
= / d'zv/=g [gf(qs, R) = 50(0)0"6a - V(as)] .

Action

528 = %f a*Q) (@2 i ”%(I)‘”(D_(_l.) dtd3x

Scalar-type:

Tensor-type:

_ w@P+3F2/2F
, Q= (H+E/2F)°
e=C"%, Q=F

¢ = Pios

Equation
Large scale
Quantization
Mode func.

75(0*QP) — ZA® =0
® = C(x) - D(x )ff(a“Q) Lt
I t)

B(x, 1), B, 1) = o
For ay/Q o 1! (1110111de many inflation models)

D) = Yot [ex () SV (ki) + ea (k) P (k)|

= la®)E = lak)? =

6% (x — x)

where v

e In super-horizon scale, ignoring transient one, ®(x,t) = C'(x).
e Conserved independently of changing gravity theory.
% Unified analysis allows us to handle transitions among gravity theories.

’Phys. Rev. D 53,

762 (1996); 54, 1460 (1996); Class. Quant. Grav. 14, 3327; 15, 1387 (1998); 15. 1401 (1998).
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More generalized Gravity Theories:?

1. Generalized f(¢, R) gravity:

5= f [%f(m)—%w(@ Be— V(@) + L }\/_ d'z. )

2. Tachyonic generalization: X= %—q‘}‘q’;f
- 1 ~ o ~ -
5= / [2]‘(@’) R X) = L(r-.) —g(ﬁ:{:. (9)

3. String corrections:

—~ — — o~ — —~ — — ~ -~ -~ -~ -~

f’ () — f(@) [(:1 (R”b(.’dRmbr-ri — 4R“bRab + R 2) T CQGubqj.nﬁb,b + 63@;(;“@,!}@‘{) T 04((;5'(1(.46.(1)2 :

(10)
4. String axion coupling:
f,((.) = é—f/(g@) el iy s fR((;(f (11)
We can always derive a unified form:
0“8 = % / a’Q) (ciﬂ = Ci%@‘”@_“) dtd’x. (12)

% Perhaps “surprisingly simple” indeed!

Phys. Rev. D 71, 063536 (2005).
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ng —1= 2(251 — € T €3 — 64), nr =2(e — Eﬁ),
(177)

P 212\
.qz%:z(‘ﬂ E). (178)

Yy

@50 Cr &

The spectral indices are generally valid in all gravity
theories we are considering in this work. In the generalized
f(&, R) gravity, we have r, = 4|e, — €3] = 2|n;|. Thus,
r; = 4l€;| = 2|n;| in the minimally coupled scalar field.
The relation r; = 2|ny| in the minimally coupled scalar
field is known as a “‘consistency relation.” We notice that
this relation is more generally valid in generalized f(¢, R)
gravity. However, in the tachyonic correction we have r; =
4le, — €3lcy = 2|nyley [19]; in a simpler case this result
was presented in Ref. [35]. In the case of string correction
terms, we can derive

—4
1 AF

] ca\3
“7z()
1 -+ 2—;’ Cr

In the string-axionic correction term, we have

{61 — € — L[% 20, + Q) — %Qe + Qf“

(179)

| |
= 4 — — — 180
ry € 63|2§|1+2M§%| (180)




H b i
El E_,), Ez = —, 63 == —,
H Ho 2HF e
1 E )
“ T 2HE

€, and €, are the slow-roll parameters used in the mini-
mally coupled scalar field [33,34]. The two additional
functional degrees of freedom in F(¢) and w(¢) are
reflected in €3 and €4. In the context of string correction,
we have an additional functional degree of freedom in
(). In order to consider its effect, we introduce the
following additional parameters:

_ F + Qa _ Qt -
“THertoy T Y
with
— F 2 (F + Q(.‘)E :

In the f(¢, R) gravity we have €5 = €, = €3, and E in
Eq. (165) becomes the one in Eq. (60). In the case of
tachyonic corrections, we introduce

*n

E=—L(xr. voxrr.. +E (166)
= ZX( .f.x .f,xx 21,) 100

-



where

Q, = —4cEH? + 20,6 P7H + 3647, Q, = —8¢1EH + €47, | |
0. = _36954"21{2 + 26’3&7’(5 —3¢H) — 66’45&4, O, = _26'25(}{-)25’ - 26’3&2(5— ¢' +&p — EPH) + 4(345054,
Q, = —16(,-]§H +2(,'2<;5(é (/) +2§q}5 — 2§<;5H) — 4(,'3§(f)3, Q= 8(,‘1(5,E — fH) - 2('2§¢2. (103)

Y
2F + Q)
Q,=F + 2A.vk/a. (119)

! .
Q =F +§Qb& cr =1 (109)
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TABLE 1. Scalar-type perturbation: We present the coefficients and definitions used in our unified formulations of the scalar-type
perturbation in Secs. IV and V. We introduce x, = wd? + 3[(F + 0,)2/QF + Q)1+ 0. + 0, + [(F + Q,)/2F + Q,)10, +
[(F+Q,)/QF + Q;,)]lef. Except for the string corrections in the last column, the other situations are valid considering general
K; for ¢} we present results assuming K = 0.

Fluid Field f(d, R) gravity Tachyonic String corrections
b= ¢, - (K/a?) ¢ = (K/a®) @54 — (K/a®) ¢sp — (K/a®) P
X[1/47G(n + p)lo, X(1/47Gd*) e, X{2F/[wd* + BF?2F)\Y X{2F/[Xfx + BF*/2F)]}'¥ _ _
V= o, Py @, + (8F,/2F) ¢, T (8F,/2F) ¢, TL(F+ Q,)/Q2F + Q,)I(8F,/F)
x = [H/87G(u+ )l (H/87Gd)h  {(HF +4F)/[wd+ {HF + 3 F)/[Xfx+ {{H + (F + Q)/@F + Q))(F
(3F?/2F)]}c; (3F*/2F)]}c; +30 M wd® +3[(F + 0,)*/
x, = (1/87G)(a/H) (1/87mG)(a/H) aF/[H + (F/2F)] aF/[H + (F/2F)] a(F + 10,)/{H
+[(F + Q.)/(2F + Qy)]}
xy= 87Gl(n + p)/H]  8wG($p*/H)  [wd® + (3F?/2F)]/ [Xfx + 3F?/2F)]/ (1/{H + [(F + Q.)/(2F + Q))]
(HF +1F) (HF +1F) X(F +5Qp)1)xs
i = (= p/) 1 1 [Xfx + GBF/2F))/ 0 /{wd® +3[(F + Q,)*/
[Xfx +2X*fxxt 2F + Q)]+ 0.}
(3F%/2F)]
= (a/H)Jp+p (a/H)¢ {a/lH + (F/2F)]} {a/[H + (F/2F)]} a/{H + [(F + Q,)/(2F + Q) }/x5
X\Jwd?® + (3F2/2F) x\/x_/“x + BF2/2F)

u= [1/87CGJu + PV (1/87GdH)¥ [1"“/\/‘19(;'62 + (BF?2F)]¥ [F/\/Xf‘x + (3F%)2F) ¥ [(F+10y)/yxa]¥

TABLE II. Tensor-type perturbation: continuation of Table I for the tensor-type perturbation
(gravitational wave). In the cases of the string corrections and the string axion, we assume K =
0; for ¢ we present results assuming K = 0.

Fluid, field f(¢, R) gravity, tachyonic  String corrections String axion
z,=  a(1/\B7wG) a/F a,|F +10, aJF + 2A\ vk /a

I 1 1 +[Q;/QF + Q)] 1

=~
—to =
Il



1. Two theories of gravity
e Newton (1647-1727): “Philosophiae naturalis principia mathematica” (1687)

“But hitherto I have not been able to discover the cause of those properties of gravity
from phaenomena, and I frame no hypotheses; for whatever is not deduced from the
phaenomena, is to be called an hypotheses; an hypotheses, whether metaphysical or
physical, whether of occult qualities or mechanical, have no place in experimental
philosophy. ... And to us it is enough that gravity does really exist, and act according
to the laws which we have explained, and abundantly serves to account for all the
motions of the celestial bodies, and of our sea [sun?].”

[saac Newton (1713) 4
On this regard, Einstein’s gravity is no better.

e Einstein (1879-1955): “Die Feldgleichungen der Gravitation” (1915) °

“Let us put

1
C’!im = —K (ﬂm - 59;‘:”T)

[where G, is the Ricci tensor].”

* In practice, however, Einstein’s gravity provides much better perspective.

INewton, 1., 1713, The mathematical principles of natural philosophy, 2nd edition, Book ITI, General Scholium; Translated into English by
Motte, A. in 1729, 1962 (University of California Press).

*Einstein, A., Preuss. Akad. Wiss. Berlin, Sitzber., 844-847 (1915); Translated in Misner, C. W., Thorne, K. S., and Wheeler, J. A., 1973,
Gravitation, (Freeman and Company) p. 433.
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Newton’s gravity:

e Non-relativistic (no c¢)
— Action at a distance, violates causality
— ¢ — oo limit of Einstein gravity
— No horizon
— Static nature
e No strong pressure allowed
e No strong gravity allowed
e No gravitational waves

e Incomplete and inconsistent

Einstein’s gravity:

e Relativistic gravity
e Strong gravity, dynamic
e Simplest

* The two theories give the same descriptions for the cosmological world model
and its linear structures.

14



\World 1Mo del: spatially homogeneous and isotropic world model

@ 8nG const. " A < g3
— = | ———+ =, puoxa .
a? g a? 3> |

e Relativistic (Friedmann 1922) ¢
e Newtonian (Milne-McCrea 1933) ’

Structures: incar perturbations

(13)

5+ 225 — dnGus = 0. (14)
a
e Relativistic (Lifshitz 1946) ®
e Newtonian (Bonnor 1957) *

“It is curious that it took so long for these dynamic models to be discovered after the
(more complex) general relativity models were known.”

G. F. R. Ellis (1989) 10

% In fact, most of the “Newtonian cosmology” are, GR guided versions!

“Friedmann A. A., 1922, Zeitschrift fiir Physik, 10, 377; translated in Bernstein J., Feinberg G., eds, 1986, Cosmological-constants: papers
in modern cosmology, Columbia Univ. Press, New York. p. 49

"Milne E. A., 1934, Quart. J. Math., 5, 64: McCrea W. H., Milne E. A., 1934, Quart. J. Math., 5, 73

SLifshitz E. M., 1946, J. Phys. (USSR), 10, 116

“Bonnor W. B., 1957, MNRAS, 117, 104

YENs, G. F. R., 1989, in Einstein and the history of general relativity, ed. D. Howard and J. Stachel (Berlin, Birkhéuser), 367

15



2. Cosmological Linear Perturbations

lfg} I | 2‘ - /] As A y a.} s v }']’ &} |h (1|,} o ik -

Spatial gauge condition takes v = 0.
Ignore rotational perturbation.

Energy-momentum tensor:
9= I0=0=1T% (16)

Zero-pressure assumed.
Temporal comoving gauge without rotation gives T” =0

Newtonian vs. Relativistic:

5§+ 225 — 4rGus = 0. (17)
a

% Coincide in the zero-pressure case.
Energy density g = mass density ¢ in the Newtonian case.

Gravitational waves:
A—2K

2
a—

& AR 3~ C“ ¢} =i0. (18)

16



In the presence of pressure:

Comoving gauge: (v = 0)

2 , ; A .. . oy K
Oy 4+ (2 +3c2 — 6w)Hb, + | — (%—2 — 4rGu(l — 6¢2 + 8w — 3w?) + 12(w — &)=
a | " a?
"9 . 14w H* acu \T LA
+(3C~. o 5“})A 8y = Ry} (L(“ n p) j7] Oy — C_S?(),, — stresses.
% Valid for general K, A, and time varying p = p(p); w = :—: = j—:

Synchronous gauge: (« = 0)

Incorrect one in the synchronous gauge (o = 0) (for K =0 = A, w = const., no stress):

N : o\ -
0+2HO + | — = — 4nGu(l + w) (1 + 3w) |6 = 0.
a?

(19)

(20)

Weinberg (72). Peebles (93), Coles-Lucchin (95.02). Moss (96). Padmanabhan (96). Longair (98), Peacock (99). ...

Apparently, this is a popular error in textbooks. For corrections, see.'!

% Due to the presence of gauge modes, it is not possible to derive a second order differential

equation in the presence of pressure even in the large-scale limit!

Gen. Rel. Grav. 23, 235 (1991); 31, 1131 (1999).
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3. Weakly Nonlinear Perturbations

“the linear perturbations are so surprisingly simple that a perturbation analysis accu-
rate to second order may be feasible ... One could then judge the domain of validity
of the linear treatment and, more important, gain some insight into the non-linear
effects.”

Sachs and Wolfe (1967) 12

'2Sachs R. K.. Wolfe A. M., 1967 ApJ. 147, 73

18



3.1 Second-order:
Relativistic-Newtonian correspondence

Newtonian:

Mass conservation, momentum conservation, Poisson’s equation:

-1 1

0+-V-u=—-V-(0u), (21)
a a
. 1

A+ Su+ -Vid = ——u- Vu, (22)
a a a

- .

— V%6 = 47 Gdo, (23)

a*

give

5 a - i 1 » : 1

0 +2-0 —4nGod = —= [aV - (0u)] + 5V - (u-Vu). (24)
a a* -

* These equations are valid to fully nonlinear order!

Relativistic: (irrotational, K = 0, but for general A) zero-pressure, single component

.l ] o o {2 o
§+225 — 4nGus = —= [aV - (5u)] + 5V - (u- Vu) + C) (-—V“u” + C'“)“‘*) | (25)
a | i a

a a

* This equation is valid to the second-order!

10



A proof

Fully nonlinear covariant equations:

The energy conservation, Raychaudhury equation become:
i+ pf =0,
ol N
0 + 59“ SR dnGn— A =0,

.
o~

where 1 = 1 0", 0 = u”.,, etc. By combining
{)

l?l- | 1 l:i d ~ab ~ ] .
s = = - o aly — 4 G ' A. — [)-

To the second-order perturbation:

By identifying
) . 1
Oty = 00, 00, ==V -u,

a
(26,27) give \

-1 1
0+-V .-u=—-
a a

V- (éu),  spatial y=0 gauge

a a

Combining (30,31) or (28) give (25).

temporal comoving (v=0) gauge,

1 i 1 oo 2 .
-V (u - fu> +4nGpd = —=V (u- Vu) — ¢V (—,,u,n,j + c}f1> :
a a~ i

(28)

(29)

(30)

(31)



Relativistic-Newtonian correspondence *

Background world model:

Relativistic (Friedmann 1922) vs. Newtonian (Milne-McCrea 1934)

a> 8nG const. A 3
5T T €7 - oxa " 32
a? 3 ° a? +3' e (32)
Linear perturbation:
Relativistic (Lifshitz 1946) vs. Newtonian (Bonnor 1957)
5+ 9225 — 4nGos = 0. (33)
a
Second-order perturbation:
Newtonian (Peebles 1980) vs. Relativistic (Noh-Hwang 2004 )
. 1 1 | i o A D :
§+226 — 4nGos = —=[aV - (bu)] + 5V - (u- Vu) + C (—Vnud 4 C}fl) | (34)
a a a a )

Except for the gravitational wave contribution, the relativistic zero-pressure fluid perturbed to
second order in a flat Friedmann background coincides exactly with the Newtonian system.

“the linear perturbations are so surprisingly simple that a perturbation analysis accu-
rate to second order may be feasible using the methods of Hawking (1966)”

Sachs and Wolfe (1967)

HPhys. Rev. D, 69, 104011 (2004); Class. Quant. Grav. 22, 3181 (2005); Phys. Rev. D, 72, 044011 (2005).



Assumptions:

Our relativistic/Newtonian correspondence includes A, but assumes:

. Flat Friedmann background
. Zero-pressure

Irrotational

. Single component fluid

. No gravitational waves <«

= B N

. Second order in perturbations «——

* Relaxing any of these assumptions could potentially leads to pure general rela-
tivistic effects!



3.4 'Third-order:
Pure general relativistic corrections *

To the third order we identify:

. 1
Oy = 00, 00, = —V - L (35)

For pure b(‘dlal -type peltmhatlon (26,27) give:

1
5 2—(5—4 Gud = —— (5 — .
€. - e = [aV - (6u)] + V (u-Vu) /

a?

pure relativistic corrections

-I-”i.‘2 {a[2pu -V (AT'X)] - V§} - n—_V [ (u Vu — —uV )]
> A B | 2 |
-|—3(L2\,9u V(V-u)+ = [u V (A X)] - 3.3 (36)
X =2p,V-u—u-Vp, + gA 'V -[u-V(Vy,) +uly,]. (37)

The first non-vanishing pure relativistic correction terms are @, order higher than the New-
tonian terms (y, = ¢ in the comoving gauge). We have for general A '°

0y = 0. (38)
The CMB temperature anisotropy gives, in the large-scale limit near horizon scale !9

oT 1 d " |

— ~ =0D ~ =, ~ 1077 39

T ~ 3% T[5> a%)

“Phys. Rev. D, 72, 044012 (2005).
"Gen. Rel. Grav. 31. 1131 (1999).
"Phys. Rev. D 59, 067302 (1999).



Conclusions in the zero-pressure case:

L.

7|

Except for the gravitational wave contribution, equations for the relativistic zero-pressure
fluid in a flat Friedmann background coincide exactly with the previously known New-
tonian equations even to the second-order perturbation.

. To the second order, we correctly identify the relativistic density and velocity perturbation

variables. In the relativistic analyses, however, we do not have a relativistic variable which
corresponds to the Newtonian potential to the second order.

. We assume a flat Friedmann background but include the cosmological constant, thus rele-

vant to currently favoured cosmology.

We expand the range of applicability of the Newtonian medium without pressure to all
cosmological scales including the super-horizon scale.

Pure relativistic corrections appear in the third order.

. The third-order correction terms, thus the pure general relativistic effects, are of ¢,-order

higher than the second-order Newtonian terms.

The corrections terms are independent of the horizon scale and depend only on the linear
order gravitational potential (curvature) perturbation strength.

. F & = "
. From the temperature anisotropy of CMB we have % ~ %Ofb ~ _J;;go,. ~ 1077,

. Therefore, one can use the large-scale Newtonian numerical simulation more reliably even

as the simulation scale approaches near (and goes beyond) the horizon.

24



4. Cosmological post-Newtonian Approach

Perturbation method:

e Perturbation expansion.

e All perturbation variables are small.

e Weakly nonlinear.
e Strong gravity.

e Valid in all scales!

Post-Newtonian method:

e Abandon geometric spirit of GR: recover the good old absolute space and absolute time.

e Provide GR correction terms in the Newtonian equations of motion.

e Expansion in v/c:

GM v <1
2 c '

e No strong gravity situation.

e Valid far inside horizon T~

e Fully nonlinear!

Complementary!

(40)



Metric:

Newtonian limit:

% 1 3 o )
Yoo = — (1 - EQU) . 90i =0, gij = 0ij.

1PN metric '7:

1 1
By = — {1 — S2U + = (2U° — 4(1))} + 07
(6 C
" 1 5 . .
Qi =~ + 07, Minkowski background

/

1 i ;
C

Cosmological 1PN metric '%:

1 1 .
g(}[} = — |:1 == EQU = C_4 (2U2 = 4@):| -+ O_ﬁ?

. _ 1 -5
.QO'EZ_ginT‘FO /

1
=L <1 ! Fzgﬁ)ﬁ +07t

Robertson-Walker background

""Chandrasekhar. S.. 1965, ApJ, 142, 1488.
SPreprint, astro-ph/0507085.

(41)

(42)



Energy-momentum tensor:

Covariant decomposition:

~

) = el

where ¢, = 0, w0’ = 0, a5 = 0, and 75 = Ty,
Fluid four vector, ,, follows from 4%, = —1 and @' = X EE”
We introduce

< 1
o=p, ll=ll, p=p G=-=Qp ny=Illy
C

Newtonian limit:

L (a Q) %J-V,- (gt.r"') =),

1 . 1 : 1
— (av;) + -—’{.f“"v};"t}?- +— (V,-p 3 V,H;’) = —V.,-_U = {J,
a ao !

| =g

a

o 1 v 1 o
R T Y e p+—(Q|, me,) =0,
ot  «a a a 0 oa J7 i

A
—U +47G (0 — op) = 0.
a—

* No gauge condition used!

* We subtract the Friedmann background equation.
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Ty = o0c” (1 o __)'H UqUp + P (uuub + Qu.h) + 29(((“.’:) + Tabs

(44)



1PN equations:

For K =0, we have V = U. In a gauge-ready form (assuming an ideal fluid):

1 1 * f

3 (a’0") T (0™ )| =0, 1PN order
1 o d 1

—(avy) + - ,*L,U" (1-|— 2QU) -

a a a c2 ) o

/

1 1 /3 11
+—|:1+(—2< 2 U+H+Q>:|Ug+_2—(2q) —U"‘P|)

a 2 ¢ a

1 1 . . 1 1. ‘-
o=pol|1 —|— —[=v*+3U )|, U =Wt — —p* +3U + 11+ i v; — Bl .
2 &r 2 0

Metric variables (potentials) U, ® and P; are determined by

I
C2

where

A 1 ST T
ZU 447G (0 — o) + {—2 [2A<I> —UAU + (apv“) ] +307 + 920 + 62U
( fpre— a — a a

1 3
+81G [Qi‘ 2 (oIl — opI1}) + 2 (p — p;,)} } =),

B | . .
_>P = —167Gov; + — (—P'}-+4U+4EU)
(1 e a\a V " _.,-

* We can impose a temporal gauge condition on P’ i

y rl 2 —5 ) | j . i
% 1PN correction terms are &L ~ -:,—;,— ~ 107” order smaller than the Newtonian terms.

Rc?
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Gauge strategy:

* Our goal is to provide equations suitable for numerical simulation including the relativistic
effects to 1PN order.

Chandrasekhar’s gauge: P’ + 3U +miU = 0/ Egs. (53), (54) give

A 1 ¥
— P = —167Gov; + - {U (m —4) EU] , (55)
a? a |,
A 1. A 1. #
?U + 447G (0 — o) + 2{2?(1) — (m — 3) %U + [(6 — m) a@_ mZ—_} U
1 3 -
+8rG {01‘ 5 (oIl — opI1y) + U (0 — o) + 5 (p— Ph)} } = 0. (56)
Therefore U, P, and ® are determined by eqs. (55,56).
Harmonic gauge: %P"}_ +4U + mQU = 0, Egs. (53), (54) give
A 1 |
— P, = -167rGov; — (m — 4) E—U.,-, (57)
a* aa
A 1 (. A : ¥ . 7 %
—U 4+ 471G (0 — o) + —,{2—}D —U—-(m-1) i + | (6 —m) == m,1 U
a? cz \ q? a a a?
, 1 3 :
+87G | ov” + 3 (oIl — oplIy) + U (0 — 05) + 3 (p— ) } = 0. (58)

* For details, see astro-ph/0507085.



d.

Why Newton’s gravity is practically reliable

in the large-scale cosmological simulations®

Fully relativistic weakly nonlinear perturbation approach:

1.

Except for the gravitational wave contribution, equations for the relativistic zero-pressure
fluid in a flat Friedmann background coincide exactly with the previously known Newtonian
equations even to the second-order perturbation.

The third-order correction terms, thus the pure general relativistic effects. are of ¢,-order
higher than the second-order Newtonian terms. These are independent of the horizon scale,

; A e - -5 . . .
and are small with @, ~ 5 X 1072 76r0-pressure, irrotational, single component, flat BG

Fully nonlinear weakly relativistic post-Newtonian approach:

L.
2.

3.

1PN correction terms are % ~ ;—) ~ 107 order smaller than the Newtonian terms.
—

We cannot rule out possible presence of cumulative effects due to the time-delayed propaga-
tion of the relativistic gravitational field, in contrast to the Newtonian case where changes
in the gravitational field are felt instantaneously:.

We provide complete 1PN equations in a gauge-ready form.

* Therefore, one can use the large-scale Newtonian numerical simulation more re-
liably even as the simulation scale approaches near (and goes beyond) the horizon.

astro-ph/0507185.
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