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Abstract .  We present a simple way of deriving cosmological perturbation equations 
in generalised gravity theories which accounts for metric perturbations in a gauge- 
invariant way. We use an imperfect fluid formulation of the perturbation equations 
developed in Einstein gravity and absorb all new contributions as effective fluid quan- 
tities. We apply this approach to the j ( 4 ,  R) -u($)+,&;~ Lagrangian which includes 
most of the gravity theories employing a scalar field and scalar curvature. The re- 
lation between our proposed method and the conformal transformation method is 
discussed. Background and perturbation equations are displayed for specific gravity 
theories which can be recovered as special cases from the above general Lagrangian. 

1. Introduction 

The linear analysis of cosmological perturbations in the Friedmann-Lemaitre- 
Robertson-Walker (FLRW) background spacetime is important for studying the large 
scale structure formation process. Most of the previous work using relativistic calcu- 
lations was done based on Einstein’s gravity theory with the Einstein-Hilbert action. 
For fairly complete calculations using gauge-invariant variables and for the imperfect 
fluid case we can refer to Bardeen’s seminal paper [l]. The same equations were de- 
rived using the covariant equations in Hwang and Vishniact ( [ a ] ,  referred to  as H V  
hereafter). HV derived all the equations in a frame which shows the contribution from 
the energy flux explicitly. 

Recently, growing interest has arisen in modified gravity theories. These are partly 
motivated by quantum calculations in curved spacetime and partly by the need to  
construct phenomenologically successful inflationary scenarios. The first kind of moti- 
vation gives some ground for studying gravity theories modified by adding terms like 
R 2 ,  RabRab (CabedCabcd in dimensions other than four), [ 4 2 R ,  R2 In R, etc to  the La- 
grangian [4]. Many of the models used to  construct more or less successful inflationary 
scenarios are based on gravity theories employing some scalar fields and their direct 
coupling to  gravity via the scalar field and scalar curvature combination. Examples 

t In the covariant calculations, the Newtonian analogy of the relativistic calculations becomes ap- 
parent. To calculate the energy density perturbation, all the equations we need are the energy, 
momentum conservation equations and the Raychaudhuri equation, whereas in Newtonian theory we 
use mass conservation instead of energy conservation, and use Poisson’s equation, which is basically 
the Raychaudhuri equation in the appropriate limit [ 3 ] .  
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include induced gravity inflation [5], Brans-Dicke type new inflation [6] and old in- 
flation [7]. In the inflationary models i t  is well known that gravitational wave (GW) 
perturbations and density perturbations usually give strong constraints on the model 
parameters. These follow from the observed level of isotropy in the cosmic background 
radiation. Most inflationary models predict a minimal level of perturbations which 
will be generated from the ground level fluctuations of quantum fields and magnified 
to  macroscopic size during the inflationary stage. 

Although perturbation analysis based on Einstein’s gravity theory is rather well 
studied, if we employ gravity theories which modify the basic structure of the theory, 
it may be necessary to  redo the calculations employing the modified field equations. 
However, perturbation analysis in these non-Einstein gravity theories are very com- 
plicated because of the complex structure of the theories. In the present paper we 
will develop an efficient calculational procedure for deriving cosmological perturbation 
equations based on FLRW background which can treat most of the modified gravity 
theories within the context of the Einstein gravity theory. The basic idea is to  treat 
all the new contributions, except the Einstein tensor part, in the field equation as 
contributions to  the effective energy momentum tensor. Since H V  recently derived all 
the perturbation equations in the Einstein gravity theory including imperfect fluid 
contributions in the particle frame, identification of the effective fluid quantities from 
the effective energy momentum tensor is trivial. Using simple formulae we can easily 
convert fluid quantities identified in the particle frame to the energy frame where no 
energy flux contributions appear [8]. A final simplification comes from employing the 
Ellis-Bruni type variables to  construct the gauge-invariant (GI) perturbation variables 
for the density and pressure (including the entropic part) [9]. We also systematically 
introduced gauge invariant and frame independent variables. 

We will apply this calculational prescription to  the generalised gravitation theories 
based on a Lagrangian which includes the following theories as special cases; f ( R )  
gravity, which includes R2 gravity as a special case, the most general scalar-tensor 
theory which includes Brans-Dicke theory as a special case, and non-minimally coupled 
scalar field theories which include induced gravity theory as a special case. We call 
this theory a ‘generalised f(q5, R)  gravity’ theory. Our calculational scheme will also 
be applicable to  more general types of gravity theories including various fields. 

I t  is well known that  the type of theory we consider as an example contains some 
theories which have conformal transformation properties which can convert a given 
theory into Einstein’s theory plus (in general) an additional scalar field with a specific 
potential. Many people have employed this simplifying prescription in perturbation 
analysis [lo]. We will discuss the connection between our calculations and conformal 
transformation met hod. 

In section 2,  we will briefly explain the calculational procedure we propose. In 
section 3,  the method developed in section 2 will be applied to  the generalised f ( 4 ,  R)  
gravity theory. The full equations necessary to calculate cosmological perturbations, 
both for density, vorticity and gravitational wave, will be derived. In section 4 we will 
discuss the connections to  the conformal transformation method. Section 5 is a dis- 
cussion with future studies outlined. In the appendix we will display both background 
and density perturbation equations for specific gravity theories. 

Our notation will be mostly consistent with Bardepn and HV. As in HV,  a dot over 
a tensor quantity Tabcd,  T a b c d ,  means that the quantity is covariantly differentiated 
along the fluid 4-velocity (eb,, TabCdieue) .  Except in the harmonically analysed 
perturbation equations, we will not distinguish between the dotal and perturbed quanti- 
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ties using different notations. To background order it is understood that all quantities 
are evaluated to  background order, and to  linear order we only drop the higher order 
terms and keep the quantities as the total (see [9,11]). We will use units where c 1, 
but our convention concerning 8aG cannot be stated a t  this stage, because our La- 
grangian contains some theories where the resulting gravitational constant can vary 
in spacetime. Instead we choose Gab = Tab to identify Tab. 

2. Calculational procedure 

In the following section we will explain the calculational procedure for deriving the 
equations needed in perturbation calculations which can be applied to  a rather general 
class of gravity theories. The  method proposed in the present paper is applicable for 
a spacetime with FLRW background. The derived equations will be enough for single 
component fluid perturbations. 

We may start  to  investigate a given theory from its Lagrangian. From the La- 
grangian, using the action principle, we can derive the gravitational field equation 
(GFE), and the equation of motion (EOM) for the matter part. We propose to  write 
the GFE in the following form: 

Gab = Tab 

where Gab is the Einstein tensor and we have simply absorbed all the other contribu- 
tions in the equations to  Tab. Here any possible cosmological constant (A) is absorbed 
into Tab and the proportionality constant is set equal to unity. As a matter of con- 
vention we may call this Tab t h e  effective energy momentum tensor. We can express 
it in terms of effective fluid quantities as: 

where p ,  p,  q a ,  aab are the energy density, pressure, energy flux and anisotropic 
pressure respectively with u,qa = Tabub = 0 and Tab = 7rba. (For convenience, we 
omit the term 'effective' in referring to  these fluid quantities.) The pressure can be 
decomposed into the equilibrium and non-equilibrium (entropic) part as p = pEQ + 
p N E q .  U" is a 4-velocity tangent to  the fluid flow lines and ha, is a projection tensor 
into %space orthogonal to  u a ,  ha,  E gab + u,ub. From this we can identify the fluid 
quantities as follows: 

The  fluid quantities expressed in these equations are exact and covariant. In the case 
where there are no fluid fields (scalar field q5 in our example in the next section) except 
the metric one, it will be convenient to  use the trace part of GFE R = -T = p - 3 p ,  
as a substitute for the EOM. 

Since our equation (1) is identifiable as the Einstein equation with 8aG 3 1, we 
can adopt known results derived in Einstein gravity theory (e.g. Bardeen, HV).  To  
background order, the equations we need are the following: 
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where U is the background scale factor, I< is the 3-space curvature, and H is the Hubble 
parameter defined as H E u / u .  Equations (3) follow from the ADM energy constraint, 
the Raychaudhuri equation and the energy conservation equation in covariant equation 
terminology[2]. EOM can be derived from the energy conservation and the second of 
equations (3) can be derived from the other equations if H # 0. 

For the perturbed equations, we can also use the equations derived in Bardeen and 
H V t .  This time it  is more convenient to  use the set of equations displayed in section 2.1 
instead of a single second-order differential equation derived for the GI density variable 
E,. Since most fields (including the minimally coupled scalar field) give contributions 
to the energy flux, as defined in equation (2), i t  is convenient to  have perturbation 
equations derived in the particle frame so that we can explicitly identify the energy 
flux term. In this paper we adopt the notation of HV, and convert the equations 
derived in the particle frame to the energy frame, denoted by the superscript E ,  using 
the following property. The  fluid 4-velocity in the energy frame is related to  the one 
in the particle frame by U: = U, + q,/(p + p ) .  In the harmonically analysed form we 
have 

2.1. Density perturbation 

Using the transformation property in (4),  we can find the following transformation 
rules for the GI velocity, energy density and pressure variables: 

t Although we use definitions introduced in Bardeen and H V ,  for completeness we summarise some 
of the definitions below. The metric and 4-velocity are written as 

The Y are scalar harmonics defined as 

where the bar ' 1 '  denotes a covariant differentiation based on the metric 9:;. Matter variables are 
defined as 

6~ 3 p6Y 6 p  E (cap6 + p7)Y qa z pfYa ?Tt E p?TTY:, 

GI variables are defined as 

@ A ~ A + -  B - - H T  $ -  
k " (  i . ' )  % (  
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where e(= U";,) = 3 H  in background and c )  E dp/dpt. In the energy frame no energy 
flux te rm appears. Instead there can be a particle flux term. However, tha t  particle 
flux te rm appears only in the number density conservation equation, and since we 
are only interested in the  evolution of energy density, we will ignore i t .  So, all the 
equations we need expressed in the energy frame can be written as follows. (For 
derivations in energy and particle frame, see Bardeen and  HV respectively.) 

3 E  k2 - 311' 
k (pa E ~ ) '  = - 

(10) 
a2 

@ A  + @ H  = - p p . ~ T .  

Equation (6) follows from equations (8)-(10). Combining equations (7) and (8), we 
can derive the  following: 

Here we introduced a variable Ap as A p  c ; p m  + p q  + $ ( a / k ) w s .  This  is a G I  and 
frame-independent variable and will be introduced later (equation (14)) in a more 
natural  way. Equations (8)-(11) are the basic density perturbation equations derived 
from GFE. 

Now, what we need is to substitute the fluid quantities, E Z ,  U!, A p ,  and sT, 
appearing in equations (8)-(11) in terms of the identified fluid quantities in equation 
( 2 ) .  We will outline how to calculate the fluid quantities in a simple way. First, 
calculating the anisotropic pressure and the energy flux (in the particle frame) from 
their definitions 

( 1 2 )  TP = 
CI - P ? F !  Pa = PfYa 

is trivial. Second, from equation (5) we can calculate the GI velocity variable in the 
energy frame, v f .  ( p f E  = p f ( v f )  = 0 also gives the same answer.) Third,  the GI 
density variable, E , ,  can also be simply calculated by using the  Ellis-Bruni variable 

h : p , * ( ~  p A a  in HV) = -kYapE, = -kYa  ( A p  - phS) 
as 

(13) 
a 

t In the literature, there exist inflationary models generated by allowing a bulk viscosity in the 
background space[l2]. In our treatment of the equations, we can easily allow the background space 
to have an entropic (bulk viscosity) part in i t .  In this case we have p = PEQ + PNEQ = PEQ + PNEQ + 
~ P E Q  + 6PNEQ (an overbar indicates a background quantity) with ~ P E Q  Z c3p6Y  and ~ P N E Q  f 
pqbare value where c: E p ~ ~ / b ,  and in (5 )  q is defined as 

a .  
P q  E Pqbare value - FPNEQ(V - B). 
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where Ap(_ ~6 + ( u / k ) b [ B  - (u /k )hT]  E p f S  in Bardeen) is a GI and frame- 
independent density variable. Using equation ( 5 ) ,  we can derive pc:. Fourth, the 
pressure perturbation, including the entropic part in i t ,  can also be simply calculated 
using the  Ellis-Bruni type variable for it: 

From this we can calculate' Ap. 
(In the case when the background has bulk viscosity in i t ,  we have A p N E Q  

The  entropic perturbation is p q  = Ap - c:Ap. 
p ~ +  

( a / k ) & E Q v s  = Ap - c i A p . )  

2.1.1. In Einstein gravity many people have found a con- 
served quantity when the scale of the perturbation is large [13]. This variable is very 
convenient in connecting the perturbation spectrum a t  the second horizon crossing 
time, in the  mat te r  or radiation dominated epoch, to its spectrum at the first horizon 
crossing time at the inflationary stage where the perturbations are generated. This 
variable was generalised in [14] t o  general background allowing Ii' (also A) and related 
to  a conserved quantity at a sudden jump  of the background equations of state.  I t  
was shown tha t  this variable has the desired properties only when the perfect fluid 
assumption is applicable. Now, we can generalise the equations taking into account 
the imperfect fluid contributions. The  following variable, now expressed in the energy 
frame, was defined in [14] 

A conserved variable? 

( $ E  becomes C defined in [13] for K = 0 and vanishing anisotropic pressure.) Using 
equations (7)-(10) we can show 

In the large scale ( k  --f 0) limit, using equations (8) and ( l o ) ,  we can show 

So, in this large scale limit $ E  is a conserved quantity, but only if there are negligible 
entropic perturbations and anisotropic pressure. In our calculation, however, since 
the fluid variables are defined (for calculational purposes) to absorb all the other 
contributions except the Einstein tensor part ,  there is no a priori reason to neglect 
these effective imperfect fluid quantities even on very large scalest. 

t However, for the specific generalised gravity theories considered in the appendix, we recently found 
quantities that are conserved in the large scale for each theory and were able to express them in an 
unique way. For these generalisation of c in some G G T ,  see [23, 241. 



Cosmological perturbations 1619 

2.2.  Vorticity perturbation 

Defining the velocity variable in the energy frame, the equations needed in calculating 
the vorticity perturbation evolution can be written as 

where Ik G U, - v,t .  

2.3. Gravitational wave 

Gravitational wave perturbations do not depend on the frame, and the equation can 
be written as 

This equation follows from the ( a ,  ,B) component of the Einstein equation or simply 
from the momentum propagation equation. To calculate the anisotropic pressure, we 
need the following shear tensor: 

Yf fo  is a tensor harmonic defined as 

rT and HT are coefficients similarly defined as in scalar part but now expanded in 
tensor harmonics. 

3. Perturbation analysis in generalised f (+ ,  R) gravity 

In this section we will apply our proposed calculational method in the previous section 

t To calculate the fluid quantities, the following kinematic properties are needed: 

W e @  = aUcq,lp] b a p  = -akv8Y,p a ,  = a (fit + $ U c )  Y, 

where ziC z v - B ,  vQ E v - ( a / k ) f i T .  Here Y, etc are vector harmonics deiined as 

1 Y,Iplp = - k 2 Y ,  Yap E -- 2k(Yalp + Ypla) YQI,  = 0. 

v ,  7 r ~ ,  and HT are coefficients similarly defined as in the scalar part but now expanded in the vector 
harmonic. 
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t o  the following type of general Lagrangiant 

P L  = $f(d> R) - $w(4)4,c4'c + P L M  (17) 

where P is a constant needed to  fix units. (We neglect surface terms which are not 
relevent in this paper.) 

From our general Lagrangian we can derive the following EOM for the scalar field, 
and GFE 

f - R F  
Gob = Tab = - F PTT + w(4,44,b - $ g a b 4 , ~ 4 ; ~ )  + ! ? a b 2  + F,4 ;b  - g a b F i C ; c )  (I9) Y 
where we defined F 2 a f /aR .  If there is no scalar field (f = f ( R ) ,  w = 0 ) ,  it is 
convenient t o  have the trace part  of GFE in place of EOM 

- R = T = ( l / F ) [ p T M  - w4,,4;' + 2 ( f  - R F )  - 3F;';;,]. ( 2 0 )  
Before decomposing the identified Tab into fluid quantities, it is convenient t o  

introduce the following Ellis-Bruni type variables 

@a 3 h:+,b R, 3 h:R,b F, E h:F,b fa E h:f,b. ( 2 1 )  

These are all first-order quantities and GI because they have vanishing background 
values, i.e. the perturbed quantities themselves are covariant. 

Using equation ( 2 ) ,  we can derive fluid quantities as the following3 

1 
p = - F ( P p M  + ;(d2 + + RF-f 2 

- O F  + F C ; ,  - F4a4 

t This Lagrangian is quite general and includes the following type of theories as special cases. ( 1 )  
f ( R )  gravity is a cme with f = f ( R ) ,  w = 0, p = 1: 

L = ; f ( ~ )  + L ~ .  
(2)  R2 gravity is a case of f ( R )  gravity with f ( R )  = R - R2/6M2 [15]. (3) Generalised scalar tensor 
theories have f = 24[R + 2A(4)] - 2 V ( 4 ) ,  p = 16n, w -+ 2w(4)/4:  

16rL = +(R+ 2A) - V - WL "' + 1 6 7 r L ~ .  
4 

These theories can be called various names depending on whether some term is considered to be a 
constant or neglected[l6]. The most widely known case is the Brans-Dicke theory where X = V = 0, 
and w = constant. (4) The case with f = aR - ( c $ ~ R  - 2 V ( 4 ) ,  w = 1 ,  0 = 1 

L = $ a R  - $Eq52R - V - $+,cq+c + L M. 
a = 1 is the non-minimally coupled scalar field case. ( 5 )  ( = 0 is the minimally coupled case. (6) 
Induced gravity is a special case with a = 0 with a specialised potential. 
$ In deriving these it is useful to use the following covariant identities. 

R~arbUaUb = k - R,a" RiCiC = -R - OR + R C ; ,  

R,,;bhQb = -OR + RC; ,  - RcaC 

R,,;dh;h: = h;,Rb);, - +eU(,Rb) - $ekhab - ko,b - RcU(,[WCb) + U C b ) ] .  

R,,;duCht = R, - Ra, - u,RcaC 

Kinematic quantities 8 ,  U&,, W a b  and a ,  are defined as [17] 

e E gob 5 hi,hf)u,;d - $8h,b "'ab f hf,h$"c;d a ,  I &,. 
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+ F + $ O F  - F e ; ,  - 5 Fcac] 1 W R F -  f 
p = F [ P P M  + F(i2 - $ @ c @ c )  - - 2 

EOM and the trace equation can also be written as the following: 

(23)  

(24 )  

W f, 7 + e$ - + - - -A = o 
2w 2w 

1 
F - R = T = -[PTM + w ( $ ~  - Q c Q c )  + 2 ( f  - R F )  + 3 ( F  + OF - F e i c ) ] .  

All the formulae derived up to  this point are covariant and exact. Since we will develop 
the single component fluid formulation, from now on we neglect contributions from 
the matter part (Tg 3 0). 

3.1. To background order 

It is trivial to write the fluid quantities to background order: 

+ F + i e p )  -- e#)  , = - ( - $ 2 + -  1 w f - R F  
2 F 2  2 

In this FLRW background, the EOM and the trace equation become 

$ + e $ + - $  4 ' 2  - - = o  fd 
2w 2w 

The first two of equations (3) can be written as 

(25 )  

Equations (25)  and (26)  complete the background equations needed. 
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3.2. To linear order 

To linear order the fluid quantities in equation ( 2 2 )  can be expressed as 

R F -  f 
2 

1 .  
qa = F ( - W 4 a a  - Fa + F a , )  

Using these in our perturbation equations (equations ( 8 ) - ( 1 1 ) ) ,  the EOM (equation 
( 2 3 ) ) ,  and the trace equation (equation ( 2 4 ) )  complete the set of equations needed to 
calculate cosmological density perturbations in our gravity theory. 

3.2.  I .  Density perturbation. Following the suggested procedure we can calculate all 
the needed GI perturbation quantities in the energy frame, vf , pc: , Ap, pa,. We 
will present our results in harmonically analysed forms. To do this it is convenient to 
introduce GI variables for 4, R, F ,  and f, in a way not depending on the frame. We 
already introduced the GI variables in equation ( 2 1 ) .  As an example we consider aa. 
Since it is a spatial variable, only the spatial part does not vanish. We can expand 
it as a, = hL4 = -kY,[54 - ( u / k ) $ ( v  - B ) ] .  Although this is GI,  it depends on 
choosing a frame. By decomposing the -a$vsYa part we can construct a GI and frame 
independent variable, A$, 

Similar variables can be defined for R, F and f, as AR, A F  and Af respectively. 
Since the shear of the normal unit vector field of the hypersurface is = -uk[B - 
( a / k ) k T ] Y , p ,  A 4  (and similarly for others) measures 64 in the zero shear (of the 
normal unit vector) hypersurface [ 1 , 21. 

From equation ( 2 7 )  we can calculate the energy flux (in the particle frame) and 
anisotropic pressure as 

Note that  in these calculations, the following expansions will be used frequently: 

h;d,* = 6, + !63@,, - $a, = - k Y , [ A $  - &BA - (u/k);bv,] 

h;$,* = - k Y , [ A $  - $bA - 2&DA - (a /k)rb"'v , ]  

where A$ G (A~!J) ' .  
kinematic quantities: 

To calculate the fluid quantities, we will need the following 

0, E hi$, ,  = - k Y , [ 3 b H  - $a., + ( a / k ) ( k 2 / u 2  - i)vs] 
~ , p  = -akv,Y,p a, = - k y , { @ A  - ( a / k ) [ i r ,  + ( h / a ) u , ] } .  
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Using equation ( 4 )  we can derive U," as 

( 3 0 )  1 a u(p + p ) v f  = F A F  - - A F  + w $ A 4  - F a A  . 
k (  a 

Now using equations ( 1 3 ) ,  ( 1 4 )  and (27 )  we can show the following energy density and 
pressure variables: 

pc: = ,[w$A$ + $ ( w , + $ ~  - f,+ + 2wO$)A4 + ( 3 k  - k 2 / a 2 ) A F  1 

+ k(-3&H + O@A) - W $ ' @ A ]  ( 3 1 )  

A p =  -{ w$A$ + f ( w , + i 2  + f ,+)A$ + Ai '+ $OAF 
F 

[ i k 2 / a 2  f ( P -  p ) ] A F  + k ( 2 & H  - & A )  - [ W i z  + 2(F iek)]@A}. 
( 3 2 )  

With equations (29)-(32)  we can rewrite our perturbation equations (8)-(11)  in terms 
o f  these variables: 

Finally operating h i d ,  on the EOM and trace equation (equations ( 2 3 )  and ( 2 4 ) )  we 
have a complete set of equations needed for scalar type perturbation: 

( 3 7 )  
= $(&A - 3&H) + @ A  f>+ + -AR. f,W 

2w 
A F  + O A F  + ( k 2 / u 2  - R J 3 ) A F  + : F A R  -k $w$A$  + $(w,+$' + 2 f , + ) A d  

= k(&A -3d?H)+ $ ( F R - 2 f ) @ A .  ( 3 8 )  
In equation ( 3 7 )  we may need A R  expressed in terms of metric quantities as follows: 

Equations (33)-(38)  are the (redundantly) complete equations we need for density 
perturbations. 
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3.2.2. Vorticity perturbation. 
variable. We can show Fa = 
(27) we can derive 

We can similarly construct the GI and frame independent 
aFvcYa,  and so we have A F  = (a/k)FF;s. From equation 

k F  
a F  pRT = --!$ p f  = - a ( p  + p)uc 

so, from equations (15) we have 

v : = o  --$ ! $ = o  p R T = o .  

That is, the vorticity mode cannot be generated in a generalised f($, R) gravity theory 
neglecting the matter contributions. 

3.2.3. Gravitational wave perturbation. From equation ( 2 7 ) ,  one can show that 

so, our GW perturbation equation (16) becomes 

We emphasise that F a f /aR  w a L / d R .  The same equation was derived in [18] us- 
ing the conformal transformation properties of the Lagrangian to  the more convenient 
form of an Einstein type theory with scalar field. (The derivation in this method will 
be shown in the next section.) Ours can be considered as another derivation of the 
same result. For analysis of equation (39), see [18]. 

4. Conformal transformation method 

In this section we will discuss the relation between our proposed direct method and 
the conformal transformation (CT) method in the case where the theory can be trans- 
formed to Einstein gravity with additional scalar field by CT. It will be shown below 
that our general Lagrangian can be conformally transformed into an Einstein type 
gravity theory with at most one additional scalar field which has a special poten- 
tial [19,20].  

Let us start with brief summary of the effect of CT on spacetime curvature. By 
CT the metric is transformed into 

gob = Q 2 g a b  (40) 

where Q is a spacetime position dependent factor. (We use the hat to denote quantities 
based on conformally transformed metric theory.) This transformation induces the 
following changes in the connection coefficients and the curvature tensors 

1 
R q c  = q c  + - (a ,cb;  + R,bb," - Riagbc) 

1 1 
R b d  = Rbd - - ( 2 Q , b ; d  Q + Q 2 ; C ; c g b d )  + 2 2 ( 4 Q , b Q , d  - R , c R ; c g b d )  
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The fluid 4-velocity and the projection tensor transform as 

4, = nu,  hab = a2hab.  

Now, by defining the conformal factor as 

where $ is a new dynamical variable, one can show that our original Lagrangian (equa- 
tion (17)) can be transformed into (we neglect the additional matter part Lagrangian 

where a possible surface term is neglected and the potential is defined as 

It becomes obvious that our original non-Einsteinian theory is cast into an Einstein 
theory with (in general) an additional scalar field ($) with a special potential term 
V ( 4 ,  $)t. From this we can derive the transformed GFE and EOM for both 4 and 4): 

W 
G a b  = T a b  = F ( d , a $ , b  - :4,c4:'gab) + $,,$,a - ;$,c$rcgab - V g a b  

+ ( ~ , ~ / 2 w ) 4 , ~ 4 ~ '  - &+,c+;c - ( F / w ) V 4  = 0 

$rCrc - V $  + & ( w / F ) + Q , ~ ~ ~ ~  = 0 .  

The EOM for $J corresponds to the trace equation (equation (20)) in the original theory. 
(We left F in these transformed equations, but it should be considered as a function 
of 11, defined in equation (41).) 

4.1, Pert U rbat io n theory 
By separating the conformal factor Cl into the background and the perturbed part as 

0 E a B G ( 1  + Say) 

we can see that the only changes in the background scale factor and the perturbed 
metric are the following: 

ti = anBG A = A + S R  H , = H L + 6 a .  (44) 

From the definitions of the potential variables one can show that changes in the GI 
perturbed potential (metric) variables are 

c P A = @ A + A s 2  @ , = @ , + A R  (45) 

t For each of the theories shown in the appendix, the proper introduction of the new dynamical 
variables (Q) allows us to conformally transform each theory into Einstein's theory with a single MSF 
Q [24]. 
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where As1 is a GI and frpme-independent variable defined as hkR,, = -kYa[s1As1- 

In our generalised f(4, R)  gravity theory, due to equations (44) and (45), we have 
(a/k)hvsl .  

Background equations, EOM for 4 and $ can be written as (in the following, for 
notational convenience, we neglect the hat denoting quantities evaluated in gab space) 

Following the procedure suggested in this paper, the perturbed fluid quantities can be 
derived as 

Using equations (8)-( l l ) ,  the perturbation equations can be written as 
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EOM for 4 and ?,h are 

Using equations (44)-(46) one can trivially check that  the original set of equations for 
the background and perturbation (equations (25), (26), (33)-(38)) can be derived from 
the above conformally transformed set of the equations. In fact, this can be another 
way of deriving the perturbation equations in these generalised gravity theories using 
CT properties. For vanishing additional scalar field (4 = 0) ,  the above equations are 
the case with minimally coupled scalar f i e l d  $ with special potential V ( $ ) .  

The vorticity mode cannot be generated in this type of theory neglecting the 
matter part .  Since p r T  = 0 in the GW mode, the GW equation becomes 

where a prime denotes a derivative with respect to  conformal time. Using equation (44) 
one can easily derive the GW perturbation equation in our original theory expressed 
in equation (39). For discussions about the physical significance of two conformally 
related metrics see [21]. 

5 .  Discussion 

In the present paper we have presented a simple way of deriving linear perturbation 
equations which can be applicable to  a broad range of gravity theories, by treating the 
system in analogy with Einstein's equation. We absorbed all new contributions into 
the effective energy momentum tensor and treated them as fluid like contributions. 
Derivations of these equations become simpler using the Ellis-Bruni type variables 
and introducing the gauge-invariant and frame-independent variables. The formalism 
developed here is applicable to  the single component fluid case in the FLRW back- 
ground. Multi-component fluid generalisation is straightforward and will be presented 
elsewhere. 

Although we have restricted our attention to  a generalised f(4, R)  gravity theory, 
this prescription can be applied to  wider variety of gravity theories, e.g., allowing the 
RabRab term in the Lagrangian, H$) contributions to  Tab [4], etc. Applications to  
specific gravity theories will be of great interest in view of the recent growing interest 
in these theories. In particular, the generation and evolution of perturbations during 
a possible inflationary phase and their final spectrum a t  second horizon crossing time 
deserve special attention. All these questions are currently under investigation. (See 
[23,24] for recent advances.) 
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Appendix. Equations for specific gravity theories 

Here we will display the background and perturbed equations needed in the pertur- 
bation calculation in specialised gravity theories. These equations can be derived in 
three different ways. First, we can directly apply the method proposed in this paper. 
Second, we can reduce the equations derived for generalised f (d ,  R)  gravity. Third, we 
can use the CT method and transform back to the original tgeory. Analysis of these 
equations in known background evolution, especially including inflationary epochs, 
will be presented elsewheret . 

A l .  f ( R )  gravity 

f ( R )  gravity is a case with f = f ( R ) ,  w = 0,  P = 1. 
Background: 

F + sF + 3 2 f  - F R )  = 0. 

Perturbed equations: 

- - 

t Recently we were able to rewrite the equations displayed in each of the following gravity theories, 
and found asymptotic solutions in both the large and small scale limits [23]. The large scale asymp 
totic solutions and corresponding conserved quantities can be used to discuss the general process of 
calculating the inflationary spectrum in a generic inflationary model [24]. 
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A 2 .  R2 gravity 

R2 gravity is a case of f (R)  gravity with f (R)  = R - R2/6M2. 
Background: 

r=-(sn-,R2) 1 1 1 
3M2F 3M2F 

R + O R  - M2 R = 0. 

Perturbed equations: 

k 2  - 3 K  R 2  

a2 @ H +  12M4F2 

For Ii' = 0, these equations are derived in [15]. 

A3.  Generalised scalar tensor theory 

Generalised scalar tensor theories is a case with f = 24[R+ 2X(4)] - 2V(4),  ,D = 1 6 ~ ,  
w ----f 2w(4) /4  (since X can be absorbed into V ,  we neglect X in the following). 
Background: 

Perturbed equations: 



1630 J Hwang 

A4. Non-minimally coupled scalar field and induced gravity 

f = aR - Ed2R - 2 V ( 4 ) ,  w = 1, p = 1, a = 1 in the non-minimally coupled case 
(I = 0 in minimally coupled case). Induced gravity is a special case with a = 0 with 
a specialised potential. 
Background: 

p=- ( - + V + 2 @ 4 $ )  i2 p = -  1 [f --v--5'4 (*.  4 + g e i + -  441 
a-5'42 2 a - E42 

$ + 0 4 + S d R + V ,  = O .  

Perturbed equations: 

I C 2  - 3 K  
( 6 ' @ ~  = - 1 { (- 1 + -) 3 p 4 2  $A$ 

a2 a - [ p  2 a-5'42 

k2 - 3 1 7  
1 35'242 

+ [ - 6 ( 2 + = ) + E d  a 2  
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A5.  Minimally coupled scalar f i e l d  

Background: 

p = ! S V  i2 p=- -v  i2 $ + e $ +  v+ = 0 .  2 
Perturbation equa,tions: 

a 
a 

- 6,  + - @ A  = $$Ad 

k 2  - 3 K  
a2 

@H + id2@, = $($A$ - $Af#) 

@ A + @ H = O  

a 
6'~ - ( 3 & H  a - & A )  S @ A  = -$($A$- VbAd) 

- 3 & ~ )  - 2 v + @ A .  

For A' = 0 ,  these equations are derived in [22]. 
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