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Abstract. A broad class of generalized gravity theories can be cast into Einstein gravity with
a minimally coupled scalar field using a suitable conformal rescaling of the metric. Using this
conformal equivalence between the theories, we derived the equations for the background and
the perturbations, and the general asymptotic solutions for the perturbations in the generalized
gravity from the simple results known in the minimally coupled scalar field. Results for the
scalar and tensor perturbations can be presented in unified forms. The large-scale evolutions for
both perturbations are characterized by corresponding conserved quantities. The simple result
for the scalar perturbation is possible mainly due to our proper choice of a gauge-invariant
combination which corresponds to the perturbed scalar field in the uniform-curvature gauge.

PACS numbers: 0450, 0462, 9880H

1. Introduction

Studies of generalized forms of Einstein’s theory as theories for gravity have been
made by many authors. Some of the most studied generalized gravity theories include
Brans–Dicke theory, induced gravity, dilaton coupling, non-minimally coupled scalar field,
nonlinear scalar curvature coupling, etc. We have a variety of motivations for considering
more generalized forms for the gravity: the Mach principle, quantum backreaction,
renormalization, higher-dimensional unification, string theory, cosmology, etc. In the
context of generalized gravity theories, Einstein gravity can be regarded as a special limiting
case.

In [1, 2] we presented a thorough derivation of the equations and general asymptotic
solutions describing the scalar and tensor perturbations in the conventional cosmological
spacetime supported by generalized gravity. The progress made in [1, 2] was based on
discovering the role of a proper choice of the gauge in treating the scalar perturbation;
previous studies in [3–5] were made in a different gauge condition. We found that by
employing a suitable gauge the scalar perturbation could be described in a simple manner
similar to that in Einstein gravity. When we dealt with the minimally coupled scalar field we
found that the choice of uniform-curvature gauge, or equivalently a corresponding gauge-
invariant combination of variables, simplifies the problem; see [6–9]. In [1, 2] we found that
when we deal with generalized gravity involving the scalar field and the scalar curvature, the
uniform-curvature gauge again suits the problem. In fact, we discovered that in the large-
scale limit, neglecting the transient (decaying) solution, the same solution for the minimally
coupled scalar field remains valid over a broad class of generalized gravity theories. The
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equations and the general solutions for both the scalar and tensor perturbations in a class
of generalized gravity theories can be presented in unified forms.

It is known in the literature that using a conformal transformation the class of generalized
gravity theories we mentioned can be cast into Einstein gravity with a minimally coupled
scalar field [10, 3]. Using the mathematical equivalence between the generalized gravity
theories and the simple minimally coupled scalar field under the conformal transformation,
without losing any rigour, we can derive the equations and solutions in the generalized
gravity directly from the known results in Einstein gravity. In this paper we use the
conformal equivalence between the theories only as a mathematical tool; for discussions
concerning the physics, see [11]. (The conformal transformation properties of the
background and perturbed quantities in the cosmological spacetime are presented in [3, 5].
However, at the time of the work in [3–5] the proper role of the uniform-curvature gauge
was not known.) Using the conformal transformation, the rigorously derived results in
[1] can be rederived in a considerably simpler manner. In this paper we will present the
derivation. We will summarize the results for the individual gravity case in tabular forms.

2. Generalizedf(φ,R) gravity

We consider a general class of gravity theories with the Lagrangian

L = 1
2f (φ,R)− 1

2ω(φ)φ
;aφ,a − V (φ). (1)

The gravitational field equation and the equation of motion for the scalar field are

Gab = 1

F

[
ω
(
φ,aφ,b − 1

2gabφ
;cφ,c

)− gab RF − f + 2V

2
+ F,a;b − gabF ;cc

]
, (2)

φ;aa +
1

2ω

(
ω,φφ

;aφ,a + f,φ − 2V,φ
) = 0. (3)

where we have definedF ≡ ∂f/(∂R). We call it the generalizedf (φ,R) gravity theory.
It includes diverse classes of gravity theories as special cases; see table 1.

Table 1. Cases of the generalizedf (φ,R) gravity.

f (φ,R) gravity L = 1
2f (φ,R)− 1

2ω(φ)φ
;aφ,a − V (φ) F = F(φ,R)

f (R) gravity L = 1
2f (R) F = F(R), φ = 0

R2 gravity L = 1
2

(
R − R2/6M2

)
F = 1− R/3M2, φ = 0

Generalized scalar L = φR − ω(φ)φ;aφ,a/φ − V (φ) F = 2φ, ω→ 2ω(φ)/φ
tensor theory

Brans–Dicke theory L = φR − ωφ;aφ,a/φ F = 2φ, ω→ 2ω/φ, V = 0

F(φ)R gravity L = 1
2F(φ)R − 1

2ω(φ)φ
;aφ,a − V (φ) F = F(φ)

Dilaton gravity L = 1
2e−φ

(
R + φ;aφ,a

)
F = e−φ, ω = −e−φ, V = 0

Generally coupled L = 1
2

(
γ − ξφ2

)
R − 1

2φ
;aφ,a − V (φ) F = γ − ξφ2, ω = 1

scalar field

Nonminimally coupled L = 1
2

(
1− ξφ2

)
R − 1

2φ
;aφ,a − V (φ) F = 1− ξφ2, ω = 1

scalar field

Conformal coupling L = 1
2

(
1− 1

6φ
2
)
R − 1

2φ
;aφ,a − V (φ) F = 1− 1

6φ
2, ω = 1

Minimally coupled L = 1
2R − 1

2φ
;aφ,a − V (φ) F = 1, ω = 1

scalar field

Induced gravity L = 1
2εφ

2R − 1
2φ
;aφ,a − V (φ) F = εφ2, ω = 1
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3. Conformal transformation to Einstein gravity

Using the conformal transformation the generalizedf (φ,R) gravity can be transformed
into Einstein gravity with an additional scalar field. By the conformal transformation the
metric is redefined as

ĝab = �2gab, (4)

where� is a spacetime position-dependent factor. We use hats to denote quantities based
on the conformally transformed metric frame. By defining the conformal factor as

� ≡
√
F ≡ e

1
2

√
2
3ψ, (5)

whereψ is a new dynamical variable, one can show that (1) can be transformed into (for
a derivation, see equations (42), (43) of [3])

L̂ = 1

2
R̂ − ω

F

1

2
φ ;̂aφ,̂a − 1

2
ψ ;̂aψ,̂a − V̂ (φ, ψ), V̂ (φ, ψ) ≡ RF − f + 2V

2F 2
. (6)

Thus, our original generalizedf (φ,R) gravity is cast into the Einstein theory with an
additional scalar field,ψ , with a special potential term̂V (φ,ψ). In most interesting
situations,φ andψ are dependent on each other.Assumingψ = ψ(φ) and introducing
a new scalar fieldφ̂ with φ̂ = φ̂(φ), (6) can be transformed into a Lagrangian for the
minimally coupled scalar field̂φ

L̂ = 1
2R̂ − 1

2φ̂
;̂aφ̂,̂a − V̂ (φ̂). (7)

For this,φ̂ should satisfy

dφ̂ =
√
ω

F
dφ2+ dψ2. (8)

4. Perturbed universe model

As the metric describing the model universe, we consider a spatially homogeneous, isotropic
and flat (FLRW) background and general perturbations of the scalar and the tensor types

ds2 = − (1+ 2α) dt2− aβ,α dt dxα + a2
[
g
(3)
αβ (1+ 2ϕ)+ 2γ|αβ + 2HT Y

(t)
αβ

]
dxα dxβ.

(9)

a(t) is the cosmic scale factor.g(3)αβ is a comoving part of the background 3-space
metric and a vertical bar indicates a covariant derivative based ong

(3)
αβ ; in the flat FLRW

background we haveg(3)αβ = δαβ . Y (t)αβ (x) is a symmetric, trace-free and transverse harmonic
function with∇2Y

(t)
αβ = −k2Y

(t)
αβ ; ∇2 is a Laplacian operator based ong(3)αβ . The perturbative

order quantitiesα(x, t), β(x, t), γ (x, t) and ϕ(x, t) characterize the scalar perturbation,
whereasHT (x, t) characterizes the tensor perturbation.β and γ are affected by the
spatial coordinate transformation in the FLRW spacetime. Since the FLRW spacetime
is spatially homogeneous and isotropic we can easily avoid using these spatially gauge-
dependent variables [12]. A combinationχ(x, t) ≡ a(β + aγ̇ ) is a variable such that it is
spatially gauge invariant. For the scalar field we letφ(x, t) = φ̄(t) + δφ(x, t) where an
overbar indicates the background quantity; we neglect the overbar unless it is necessary.
Now, the variablesα, ϕ, χ andδφ are spatially gauge invariant, but are temporally gauge
dependent.HT is gauge invariant. For the gauge transformation properties, see section 2.2
of [13].
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In handling the scalar perturbations in the cosmological background we prefer thegauge
ready methodintroduced in [13] which fixes only the spatial gauge condition (by using the
spatially gauge-invariant variableχ ) and leaves the temporal gauge condition for later
convenient use depending on the situation. We have several fundamental temporal gauge
conditions: the gauge conditions concerning the metric areα ≡ 0 (the synchronous gauge),
ϕ ≡ 0 (the uniform-curvature gauge),χ ≡ 0 (the zero-shear gauge) and the uniform-
expansion gauge which fixes the perturbed part of the extrinsic curvature. There also
exist gauge conditions which fix the energy–momentum tensor part, and they are the
comoving gauge, the uniform-density gauge, etc. Out of these several choices, except
for the synchronous gauge, each of the gauge conditions completely fixes the temporal
gauge mode. The variable in any one of these gauge conditions corresponds to a unique
gauge-invariant combination which involves the considered variable and the variable used
in the gauge condition. The variables under these gauge conditions can be equivalently
considered as the gauge-invariant variables. Thus, as long as we are working in these
gauge conditions (which exclude the synchronous gauge) we do not need to worry about
the remnant gauge mode. Instead, we need to pay attention to choosing theproper gauge
condition which is most convenient to the problem. According to Bardeen in [12] ‘The
moral is that one should work in the gauge that is mathematically most convenient for the
problem at hand’. This suggestion is implemented in the gauge-ready method proposed
in [13]. In [8, 2], after going through all the fundamental gauge conditions by using the
gauge-ready method, we have found that the uniform-curvature gauge is most suitable for
treating the scalar field and the classes of the generalized gravity theories considered in this
paper.

We decompose the conformal factor� into the background and the perturbed part as

�(x, t) ≡ �̄(t)[1+ δ�(x, t)]. (10)

From equation (5), we have

�̄ =
√
F = e

1
2

√
2
3ψ, δ� = δF

2F
= 1

2

√
2

3
δψ. (11)

We can show that the only changes under the conformal transformation are the following
(see section 4.1 of [3] and section 2.1 of [13]):

â = a�̄, dt̂ = �̄ dt, α̂ = α + δ�, ϕ̂ = ϕ + δ�. (12)

Thus, for example, we have (H ≡ ȧ/a):

Ĥ = 1

�

(
H + �̇

�

)
, χ̂ = �χ. (13)

From equation (8) we can show

˙̂
φ =

√
ω

F
φ̇2+ 3Ḟ 2

2F 2
,

δφ̂

˙̂
φ
= δφ

φ̇
= δF

Ḟ
. (14)

Relations amonĝφ, φ andF in the individual gravity cases are summarized in table 2.

5. Perturbations in Einstein gravity

We consider a minimally coupled scalar field. The Lagrangian is given in (7). In this section
we neglecthats on the background and perturbed quantities. The equations describing the
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Table 2. Conformally transformed scalar field.

General forms d̂φ =
√
ω
F

dφ2 + 3dF 2/2F 2 ˙̂φ =
√
ω
F
φ̇2 + 3Ḟ2

2F 2
δφ̂
˙̂
φ
= δφ

φ̇
= δF

Ḟ
V̂ = RF−f+2V

2F 2

f (R) gravity, φ̂ =
√

3
2 lnF φ̂ =

√
3
2 lnF δφ̂ =

√
3
2
δF
F

V̂ = RF−f
2F 2

R2 gravity

Generalized scalar φ̂ = ∫ √ω(φ)+ 3
2

dφ
φ

˙̂
φ =

√
ω(φ)+ 3

2
φ̇
φ

δφ̂
˙̂
φ
= δφ

φ̇
V̂ = V

4φ2

tensor theory

Brans–Dicke theory φ̂ =
√
ω + 3

2 lnφ φ̂ =
√
ω + 3

2 lnφ δφ̂ =
√
ω + 3

2
δφ
φ

V̂ = 0

F(φ)R gravity φ̂ = ∫ √ ω
F
+ 3

2F 2

( dF
dφ

)2
dφ φ̂ = ∫ √ ω

F
+ 3Ḟ2

2F 2φ̇2 dφ δφ̂
˙̂
φ
= δφ

φ̇
V̂ = V

2F 2

Dilaton gravity φ̂ = 1√
2
φ φ̂ = 1√

2
φ δφ̂ = 1√

2
δφ V̂ = 0

Generally coupled φ̂ = ∫ √γ+ξ(6ξ−1)φ2

γ−ξφ2 dφ ˙̂
φ =
√
γ+ξ(6ξ−1)φ2

γ−ξφ2 φ̇
δφ̂
˙̂
φ
= δφ

φ̇
V̂ = V

(γ−ξφ2)2

scalar field

Nonminimally coupled φ̂ = ∫ √1+ξ(6ξ−1)φ2

1−ξφ2 dφ ˙̂
φ =
√

1+ξ(6ξ−1)φ2

1−ξφ2 φ̇
δφ̂
˙̂
φ
= δφ

φ̇
V̂ = V

(1−ξφ2)2

scalar field

Conformal coupling φ̂ = √6 tanh−1 φ√
6

φ̂ = √6 tanh−1 φ√
6

δφ̂ = δφ

1− 1
6φ

2 V̂ = V

(1− 1
6φ

2)2

Minimally coupled φ̂ = φ φ̂ = φ δφ̂ = δφ V̂ = V
scalar field

Induced gravity φ̂ =
√

6+ 1
ε

lnφ φ̂ =
√

6+ 1
ε

lnφ δφ̂ =
√

6+ 1
ε
δφ
φ

V̂ = V

(εφ2)2

evolution of the background are (see equations (2)–(4) of [6]):

H 2 = 1
3

(
1
2φ̇

2+ V ), Ḣ = − 1
2φ̇

2, φ̈ + 3Hφ̇ + V,φ = 0. (15)

The third equation follows from the first two.
When we manage the gravity theory involving the scalar field our experience tells us

that the uniform-curvature gauge is the most convenient one; equivalently we can take the
gauge-invariant variables with a subindexϕ. For the uniform-curvature gauge, see section 3
of [7]. Thorough perturbation analyses for a minimally coupled scalar field in the uniform-
curvature gauge were made in [6–9]. An example of the gauge-invariant combination is

δφϕ ≡ δφ − φ̇

H
ϕ ≡ − φ̇

H
ϕδφ. (16)

δφϕ becomesδφ in the uniform-curvature gauge which takesϕ ≡ 0 as the gauge condition.
The action expanded to the second order in the perturbed scalar field is presented in (39)
of [7] as (in [7] we adopted some results from the Lagrangian based analyses in [14])

S = 1

2

∫
a3

{
δφ̇2

ϕ −
1

a2
δφ |αϕ δφϕ,α + H

a3φ̇

[
a3

(
φ̇

H

)·]·
δφ2

ϕ

}√
g(3) dt d3x, (17)

where in the flat FLRW background we haveg(3) = 1. A closed-form equation for thescalar
field perturbation and the large- and small-scale asymptotic solutions are (see equations (7),
(22), (12), (16) of [6]):

δφ̈ϕ + 3Hδφ̇ϕ −
{

1

a2
∇2+ H

a3φ̇

[
a3

(
φ̇

H

)·]·}
δφϕ = 0, (18)
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δφϕ(x, t) = φ̇

H

[
−C(x)+D(x)

∫ t H 2

a3φ̇2
dt

]
, (19)

δφϕ(k, η) = 1

a

[
c1(k)e

ikη + c2(k)e
−ikη

]
, (20)

where we have used dη ≡ dt/a and∇2→−k2. C(x) andD(x) in the large-scale solution
are the coefficients of the growing and decaying solutions, respectively. Quantum field-
theoretical analyses of (18) in the context of cosmological curved spacetime can be found
in [6, 7, 9]. Solutions in (19) and (20) are valid for a generalV (φ). Using equation (15),
equation (18) can be written in a compact form as (see equation (11) of [6])

H

a3φ̇

[
a3φ̇2

H 2

(
H

φ̇
δφϕ

)·]·
− 1

a2
∇2δφϕ = 0. (21)

The equation and the asymptotic solutions for thegravitational wave are (see
equation (101) of [13])

ḦT + 3HḢT − 1

a2
∇2HT = 0, (22)

HT (x, t) = Cg(x)−Dg(x)

∫ t

0

1

a3
dt, (23)

HT (k, η) = −1

a

[
cg1(k)e

ikη + cg2(k)e
−ikη

]
. (24)

The action for the gravitational wave can be found in [15] and section 18 of [17].
Thevorticity perturbationdoes not directly couple with the scalar-type gravity theory; it

will evolve according to the angular momentum conservation in the expanding background
(see section 3.2.2 of [3] and [16]).

6. Perturbations in generalized gravity theories

Using equation (12) we can show that the following quantities are invariant under the
conformal transformation:

dη, ∇2, k, ϕδφ,
H

φ̇
δφϕ, HT . (25)

We regard the quantities in section 5 (equations (15)–(24)), as being in the conformal frame,
and thus are hatted. Using the conformal transformation properties in (10)–(14), (25) we
can derive the corresponding counterparts in the original frame which are now valid for the
individual generalized gravity theory included in the generalizedf (φ,R) gravity.

For the background, equation (15) leads to

H 2 = 1

3F

(
ω

2
φ̇2+ RF − f + 2V

2
− 3HḞ

)
, (26)

Ḣ = − 1

2F

(
ωφ̇2+ F̈ −HḞ ) , (27)

φ̈ + 3Hφ̇ + 1

2ω

(
ω,φφ̇

2− f,φ + 2V,φ
) = 0. (28)

When we derive (28) we may needR = 6(2H 2+ Ḣ ); equation (28) also follows from (26)
and (27).
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The same form of (16) remains valid in the generalized gravity theories. The action in
(17) becomes (we ignore the surface terms)

S = 1

2

∫
a3 ω + 3Ḟ 2/2φ̇2F(

1+ Ḟ /2HF )2

{
δφ̇2

ϕ −
1

a2
δφ |αϕ δφϕ,α

+ H

a3φ̇

(
1+ Ḟ /2HF )2

ω + 3Ḟ 2/2φ̇2F

[
a3ω + 3Ḟ 2/2φ̇2F(

1+ Ḟ /2HF )2

(
φ̇

H

)·]·
δφ2

ϕ

}√
g(3) dt d3x.

(29)

For the scalar perturbation, equations (18)–(20) lead to

δφ̈ϕ +
{

3H +
(
1+ Ḟ /2HF )2

ω + 3Ḟ 2/2φ̇2F

[
ω + 3Ḟ 2/2φ̇2F(
1+ Ḟ /2HF )2

]·}
δφ̇ϕ

−
{

1

a2
∇2+ H

a3φ̇

(
1+ Ḟ /2HF )2

ω + 3Ḟ 2/2φ̇2F

[
ω + 3Ḟ 2/2φ̇2F(
1+ Ḟ /2HF )2a

3

(
φ̇

H

)·]·}
δφϕ = 0,

(30)

δφϕ(x, t) = φ̇

H

[
−C(x)+D(x)

∫ t

0

(
H + Ḟ /2F )2

a3
(
ωφ̇2+ 3Ḟ 2/2F

) dt

]
, (31)

δφϕ(k, η) = 1

a

1+ Ḟ /2HF√
ω + 3Ḟ 2/2φ̇2F

[
c1(k)e

ikη + c2(k)e
−ikη

]
. (32)

In order to derive (30) it is much simpler to use (21) which leads to

φ̇

H

(
H + Ḟ /2F )2

a3
(
ωφ̇2+ 3Ḟ 2/2F

) [a3
(
ωφ̇2+ 3Ḟ 2/2F

)(
H + Ḟ /2F )2

(
H

φ̇
δφϕ

)·]·
− 1

a2
∇2δφϕ = 0. (33)

By expanding (33) we get (30). For the scalar perturbation, we useδφ as the representative
one; for theories withoutδφ, such asf (R) gravity, the above results remain valid using the
relations in (14).

For the gravitational wave, from equations (22)–(24) we have

ḦT +
(

3H + Ḟ
F

)
ḢT − 1

a2
∇2HT = 0, (34)

HT (x, t) = Cg(x)−Dg(x)

∫ t

0

1

a3F
dt, (35)

HT (k, η) = − 1

a
√
F

[
cg1(k)e

ikη + cg2(k)e
−ikη

]
. (36)

Thus, we complete our derivation of the results valid in a class of generalized
gravity theories directly from the known results in Einstein gravity using the conformal
transformation method. The method itself is generally applicable independently of the
gauge conditions (e.g. see [3, 5, 17]).

In the limit of Einstein gravity with a minimally coupled scalar field we haveF = 1= ω
and, apparently, equations (26)–(36) reduce to the corresponding equations in section 5.
Remarkably, the growing solutions ofδφϕ and HT in (31) and (35) do not involveF
or ω. This implies that, for the growing solution in the large-scale limit, the same
solutions in Einstein gravity remain valid in the generalized gravity theories. It is also
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noteworthy that the equations and the general asymptotic solutions presented in this section
are valid considering the generalV (φ), ω(φ) andf (φ,R) in unified forms for the classes
of generalized gravity theories we have been considering.

7. Comparison with the zero-shear gauge results

The large-scale asymptotic solutions in the zero-shear gauge are derived in [3, 5]; studies
in [17, 18] are also based on this gauge condition. From equations (16) and (18) of [5] we
have

δφχ(x, t) = −C(x) φ̇
aF

∫ t

0
aF dt + d(x) φ̇

aF
, (37)

ϕχ(x, t) = C(x)
(

1− H

aF

∫ t

0
aF dt

)
+ d(x) H

aF
, (38)

whered(x) is a coefficient of the decaying solution. The Einstein gravity limits of (38),
(37) and the relation through the conformal equivalence can be found easily; the following
relations are useful:

δφ̂χ

˙̂
φ
= δφχ

φ̇
= δFχ

Ḟ
, ϕ̂χ = ϕχ + δFχ

2F
. (39)

From section 2.2 of [13] we note thatϕχ ≡ ϕ − Hχ ≡ −Hχϕ and δφχ ≡ δφ − φ̇χ are
gauge-invariant combinations which becomeϕ and δφ, respectively, under the zero-shear
gauge which takesχ ≡ 0 as the gauge condition. Thus, from (16), (37), (38) we can derive
the solution in the large-scale limit as

δφϕ = δφ − φ̇

H
ϕ = δφχ − φ̇

H
ϕχ = − φ̇

H
C(x). (40)

Notice that the decaying solution in the zero-shear gauge cancels out in the uniform-
curvature gauge. In fact, in equation (109) of [2] we derived

D(x) = −2∇2d(x). (41)

Using the conformal transformation the proof of (41) becomes simple. In the case of
minimally coupled scalar field, from (8)–(10) of [8] we can derive

1

a2
∇2ϕχ = Ḣ

H
ϕ̇δφ. (42)

From equations (16), (19), (38) we can arrive at (41). Since equation (41) is invariant under
the conformal transformation, it remains valid for the generalized gravity theories and thus is
proved. Thus, although it looks complicated, the decaying solution in the uniform-curvature
gauge is ahigher-orderterm in the large-scale expansion compared with the one in the zero-
shear gauge. We also note that the growing solution issimpler in the uniform-curvature
gauge; for example, it does not involveF which characterizes the non-Einsteinian nature
of the theory. Furthermore, the small-scale solution in the uniform-curvature gauge (32)
is also much simpler than the one in the zero-shear gauge which is presented in [4]. The
complicated form of equation forδφχ in the minimally coupled scalar field is presented in
(37) of [8] which can be compared with the simple one forδφϕ in (18).
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8. Discussions

In this paper we have derived the equations and the general asymptotic solutions
characterizing the evolution of the perturbed universe model, which are valid in a wide class
of generalized gravity theories. Compared with our previous work in [1, 2], in this paper
we adopt the conformal equivalences of the considered generalized gravity theories to the
Einstein one, thus much simplifying the derivation of both the evolution equations and the
general asymptotic solutions. Straightforward derivations of the results in section 6, without
addressing the conformal equivalence with the minimally coupled scalar field, are presented
in [2]. The equations and the asymptotic solutions for the scalar and tensor perturbations
in section 6 can be written in unified forms (see table 3). We note that growing solutions
of ϕδφ andHT are conserved in the large-scale limit. Ignoring the transient solutions, from
(16), (31), (35) we have

ϕδφ(x, t) = C(x), HT (x, t) = Cg(x). (43)

Table 3. Unified form expressions for the scalar and tensor perturbations. We havev ≡ −z8
andz ≡ a√Q. (In the action formulation of the tensor perturbation we need to take account of
the two polarization states properly [15]. In this table we ignore this minor complication; for a
proper account, see [20].)

Action S = 1
2

∫
a3Q

(
8̇2 − 1

a28
|α8,α

)√
g(3) dt d3x S = 1

2

∫ (
v′2 − v|αv,α + z′′

z
v2
)√

g(3) dη d3x

Equation 8̈+
(

3H + Q̇
Q

)
8̇− 1

a2∇28 = 0 v′′ −
(
∇2 + z′′

z

)
v = 0

Large scale 8 = C(x)−D(x) ∫ t0 (a3Q)−1 dt v = −z [C(x)−D(x) ∫ η0 z−2 dη
]

Small scale 8 = −(a√Q)−1
[
c1(k)eikη + c2(k)e−ikη

]
v = c1(k)eikη + c2(k)e−ikη

Scalar pert. 8 = ϕδφ, Q = ωφ̇2+3Ḟ 2/2F

(H+Ḟ /2F)2 v = −zϕδφ, z = a
√
ωφ̇2+3Ḟ2/2F
H+Ḟ /2F

Tensor pert. 8 = HT , Q = F v = −zHT , z = a√F

Considering our preceding publications, most of the results presented above are not new.
The main point of this work is the considerably simpler derivations of the results in [1, 2]
using the conformal relations without losing any mathematical rigour. This, in fact, makes us
understand why we were able to have the simple and unified formulation which is valid for
the class of generalized gravity theories. The action formulation presented in equation (29) is
new and will be useful for a quantum field-theoretic treatment of the perturbation theory; for
recent applications, see [19, 20]. The conformal transformation properties of the generalized
gravity were known in [10, 3]. The applications of the conformal transformation property in
the context of the cosmological perturbations were made in [3, 17]; as we have mentioned,
the works in [3, 17] are based on the zero-shear gauge which leads to more complicated
results compared with our results based on the uniform-curvature gauge (section 7).

We emphasize the special role of the uniform-curvature gauge in the treatment of the
generalized gravity with a dilaton field. The uniform-curvature gauge was first introduced
in the literature in [13] as one of the fundamental temporal gauge choices; this gauge was
not known in the reviews in [21]. As we briefly mentioned in section 4, the uniform-
curvature gauge choice completely fixes the temporal gauge mode, thus each variable in
the gauge condition corresponds to a uniquely gauge-invariant combination; e.g.δφϕ in
(16) is the unique gauge-invariant combination which becomes the scalar field fluctuation
in the uniform-curvature gauge which fixesϕ ≡ 0 as the gauge condition. In this sense
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the variables in the uniform-curvature gauge can be considered as the equivalently gauge-
invariant ones. The previous works on this subject in [3–5, 13, 14, 17, 18] are based on the
zero-shear gauge condition. The zero-shear gauge condition also fixes the temporal gauge
mode completely, thus variables in the gauge are equivalently gauge invariant. However, as
compared in section 7, the analyses and the results in the uniform-curvature gauge are much
simpler than the ones in the zero-shear gauge. The solutions in the other fundamental gauge
conditions are presented in section VI of [2]. It may be worth mentioning that the variable
v(≡ −zϕδφ) used in table 3 was first introduced by Mukhanov in [14] in the context of
Einstein gravity; in the context of generalized gravity, see [17, 18]. (However, the variablev

was not recognized as the combination of the scalar field fluctuation and the spatial curvature
variable until a recent paper [22] where the uniform-curvature gauge was rediscovered
without noticing our works.) The treatments of the cosmological perturbation in some
particular generalized gravity considered in [18, 17, 22] are all based on the conformal
transformation technique. Recently, inflation scenarios which involve an additional inflaton
field or multiple episodes of inflation have become popular. In [23] we find some attempts
to calculate the generated density spectra in the scenarios involving the additional scalar
field in generalized gravity; all these works are based on the conformal transformation
technique. However, the analyses made in [23] are based on a gauge other than the uniform-
curvature gauge and may deserve another look with a new perspective using the proper gauge
choice.

The generalized gravity theories we have considered in this paper do not include the
following types of generalized gravity theories in the Lagrangian: general couplings with
the Ricci or the conformal curvature likeRabRab orCabcdCabcd , couplings involving general
derivatives of the scalar curvature and the scalar field, etc. These types of theories cannot be
related to Einstein gravity through a conformal transformation. Cosmological perturbation
analyses in the context of these more generalized gravity theories [16, 24], and quantum
field-theoretical counterparts of the classical results presented in this paper, will be addressed
in future papers [19].
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