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Abstract

The classical evolution and the quantum generation processes of the scalar- and tensor-type cosmological perturbations in
the context of a broad class of generalized gravity theories are presented in unified forms. The exact forms of final spectra of
the two types of structures generated during a generalized slow-roll inflation are derived. Results in generalized gravity are
characterized by two additional parameters which are the coupling between gravity and fieldf (φ,R), and the nonminimal
coupling in the kinetic part of the fieldω(φ). Our general results include widely studied gravity theories and inflation models
as special cases, and show how the well known consistency relation and spectra in ordinary Einstein gravity inflation models
are affected by the generalized nature of the gravity theories. 2001 Published by Elsevier Science B.V.

1. Introduction

Lifshitz instability theory [1], the relativistic linear
perturbation theory of an expanding Friedmann world
model, first presented in 1946 has been studied in the
literature over more than a half century [2–5]. The ob-
served cosmological structures in the large-scale and
in the early universe are generally believed to be-
have as small deviations from the homogeneous and
isotropic background world model. Under such a situ-
ation the relativisitic cosmological perturbation analy-
sis becomes manageable due to the assumed linear-
ity of the structures. Recent observational advances of
the CMBR anisotropies conform/reinforce the valid-
ity of the two basic assumptions used in most of the
cosmological structure formation theories: the homo-
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geous and isotropic Friedmann world model, and the
linearity of the imposed structures.

However, the observational evidences do not nec-
essarily constrain the underlying gravity theory, es-
pecially during the seed generating stage in the very
early universe, to be Einstein one. Generalized forms
of gravity appear ubiquitously in any reasonable at-
tempts to understand the quantum aspects of the grav-
ity theory, and also naturally appear in the low energy
limits of diverse attempts to unify gravity with other
fundamental forces, like the Kaluza–Klein, the su-
pergravity, the string/M-theory programs. Modifying
terms appear naturally in the quantization processes of
the gravity theory in a way toward the quantum grav-
ity. Thus, there arises a growing chance that the early
stages of the universe were governed by the gravity
more general than Einstein one.

Reflecting such possibilities, there have been many
studies of the world models as well as the perturba-
tions based on variety of generalized gravity theories

0370-2693/01/$ – see front matter 2001 Published by Elsevier Science B.V.
PII: S0370-2693(01)00875-9



232 H. Noh, J.-C. Hwang / Physics Letters B 515 (2001) 231–237

[6–8]; for our study see [9–12]. In this Letter we will
present the classical evolution and quantum genera-
tion processes, and the consequent inflationary spectra
in unified forms which include (1) the scalar- and the
tensor-type structures, and (2) the fluid and the field in
Einstein gravity, and the field in a class of generalized
gravity theories. We setc≡ 1.

2. Gravity and world model

We consider gravity theories with the following
action

S =
∫
d4x

√−g [1
2f (φ,R)− 1

2ω(φ)φ
;aφ,a

(1)− V (φ)+Lm
]
,

wheref (φ,R) is a general algebraic function of the
scalar fieldφ and the scalar curvatureR; ω(φ) and
V (φ) are general algebraic functions ofφ. Lm is the
matter Lagrangian with the hydrodynamic energy–
momentum tensorTab defined asδ(

√−gLm) ≡
1
2
√−g T abδgab. Our generalized gravity includes as

subset [10]:f (R) gravity which includesR2 gravity,
the scalar-tensor theory which includes the Jordan–
Brans–Dicke theory [13], the nonminimally coupled
scalar field, the induced gravity [14], the low-energy
effective action of string theory [15], etc. It does not,
however, include higher-derivative theories with terms
like RabRab, see [16].

We consider a spatially homogeneous and isotropic
Friedmann world model with the most general space-
time dependent perturbations

ds2 = −(1+ 2α)dt2 − 2a(β,α +Bα) dt dx
α

(2)

+ a2[g(3)αβ (1+ 2ϕ)+ 2γ,α|β
+ 2C(α|β) + 2Cαβ

]
dxα dxβ.

α, β , γ , and ϕ indicate the scalar-type structure;
the transverseBα and Cα indicate the vector-type
structure; the transverse-tracefreeCαβ indicates the
tensor-type structure. The three types of structures
are related to the density condensation, the rotation,
and the gravitational wave, respectively. Since, to
the linear order in the Friedmann background, these
three types of structures evolve independently, we can
handle them separately. Indices ofBα , Cα andCαβ

are based ong(3)αβ ; a vertical bar indicates a covariant

derivative based ong(3)αβ .
We also consider the general perturbations in the

hydrodynamic energy–momentum tensor and the
scalar field Tab(x, t) = �Tab(t) + δTab(x, t) and
φ(x, t)= φ̄(t)+δφ(x, t). The perturbed order energy–
momentum tensor in terms of the hydrodynamic fluid
quantities is

T 0
0 = −(µ̄+ δµ), T 0

α = (µ+ p)vα,

(3)T α
β = (p̄+ δp)δαβ + παβ ,

wherevα andπαβ are based ong(3)αβ .
We introduce the following gauge-invariant combi-

nations

ϕv ≡ ϕ − aH

k
v, ϕδφ ≡ ϕ − H

φ̇
δφ ≡ −H

φ̇
δφϕ,

(4)ϕχ ≡ ϕ −Hχ,

wherek is a comoving wavenumber andH ≡ ȧ/a; an
overdot and a prime indicate time derivatives based
on t and the conformal timeη, respectively, with
dt ≡ a dη. ϕχ is the same asϕ in the zero-shear gauge
which setsχ ≡ a(β + aγ̇ ) equals to zero as the gauge
condition;ϕv is the same asϕ in the comoving gauge
condition which takesv/k ≡ 0 as the gauge condition;
v introduced asvα ≡ −v,α/k is a velocity related
scalar-type perturbation variable. For the scalar field
the velocity related effective fluid quantity becomes
a(µ + p)v/k = φ̇δφ, thus the uniform-field gauge
with δφ ≡ 0 coincides with the comoving gauge
condition [17]. The gauge-invariant combinationϕv
was first introduced by Lukash in 1980 [4]; in the
following we will notice the profound importance
of ϕv , the Lukash variable, in handling the scalar-type
cosmological perturbations.

The equations for background are:

(5)

H 2 = 1

3F

[
µ+ 1

2

(
ωφ̇2 − f +RF + 2V

) − 3HḞ
]

− K

a2 ,

(6)Ḣ = − 1

2F

(
µ+ p+ωφ̇2 + F̈ −HḞ

) + K

a2 ,

(7)R = 6

(
2H 2 + Ḣ + K

a2

)
,

(8)φ̈ + 3Hφ̇+ 1

2ω

(
ω,φφ̇

2 − f,φ + 2V,φ
) = 0,
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(9)µ̇+ 3H(µ+ p)= 0,

whereF ≡ ∂f/(∂R). Eq. (6) follows from the rest
of the equations.K is the sign of the background
spatial curvature. In Einstein gravity limit we have
F = 1/(8πG). Our gravity theory includes the cos-
mological constant,Λ. 1

3. Classical evolution

We considernear flatbackground, thus neglectK
term. The equations and the large-scale solutions for
the scalar- and tensor-type structures can be written in
a unified form as

(10)
1

a3Q

(
a3QΦ̇

)· + c2
A

k2

a2
Φ = 0,

where, for the fluid in Einstein gravity, the field in
generalized gravity, and the tensor-type structures,
respectively, we have [10,12,18]:

(11)Φ = ϕv, Q= µ+p

c2
AH

2
, c2

A = c2
s ,

(12)

Φ = ϕδφ, Q= ωφ̇2 + 3Ḟ 2

2F(
H + Ḟ

2F

)2 ≡ φ̇2

H 2Zs, c2
A = 1,

(13)Φ = Cα
β , Q= F ≡ 1

8πG
Zt, c2

A = 1,

whereZ’s become unity in the limit of Einstein grav-
ity. 2 Eqs. (11), (12) are valid for single component
fluid and field, whereas Eq. (13) is valid in the pres-
ence of arbitrary numbers of fluid and field as long as
the tensor-type anisotropic stress vanishes. The case

1 It can be simulated using either the scalar field or the fluid.
Using the scalar field we letV → V +Λ/(8πG). Using the fluid
we letµ→ µ+Λ/(8πG) andp → p −Λ/(8πG). This causes a
change only in Eq. (5).

2 In the gravity with stringy correction terms

(14)

ξ(φ)
[
c1R

2
GB + c2G

abφ;aφ;b + c3✷φφ;aφ;a + c4(φ
;aφ;a)2

]
,

(15)g(φ)RR̃,

in the Lagrangian, whereR2
GB ≡ RabcdRabcd − 4RabRab + R2

and RR̃ ≡ ηabcdR
ef
ab
Rcdef , we still have Eq. (10) with more

complicatedQ andc2
A [19].

of Eq. (11) is valid for an ideal fluid in Einstein grav-
ity with c2

s ≡ ṗ/µ̇. 3 The case of Eq. (12) is valid
for the second-order gravity system such as either
f = F(φ)R in the presence of a fieldφ or f = f (R)

without the field. The case of Eq. (13) is valid for the
general system in Eq. (1). Usingz≡ a

√
Q andv ≡ zΦ

Eq. (10) becomes [4]

(17)v′′ + (
c2
Ak

2 − z′′/z
)
v = 0.

In the large-scale limit, withz′′/z� c2
Ak

2, we have an
exact solution

(18)Φ = C(x)−D(x)

t∫
0

dt

a3Q
.

Ignoring the transient solution we have a temporally
conserved behavior

(19)Φ(x, t)= C(x).

For the scalar-type perturbation we can show that the

decaying solution in Eq. (18) is
(
k
aH

)2
higher order

compared with the one in the zero-shear gauge [10].
Therefore, the nontransient solutions ofΦ in the large-
scale limit is generallyconserved. These conserva-
tion properties are valid considering generally time
varying p(µ), V (φ), ω(φ), and f (φ,R) [F(φ) for
ϕδφ andf (R) for ϕδF ], thus are valid independently
of changes in underlying gravity theory. The unified
analyses of the gravity theories belonging to Eq. (1)
are crucially important to make this point: that is, since
the solutions and the conservation properties are valid
considering generalp, V , ω, andf , we can claim that
Φ remains conserved independently of changing equa-
tion of state, field potential, and gravity sector.

4. Quantum generation

We have shown that the growing solution ofΦ is
conserved in the large scale limitindependentlyof the

3 In the situation with generalK , with [8]

(16)Φ ≡ ϕv − K/a2

4πG(µ+p)
ϕχ ,

Eqs. (10), (11) are valid for an ideal fluid [18], whereas the same
equations withc2

A ≡ 1 − 3(1 − c2
s )K/k

2 are valid for a minimally
coupled scalar field [21].
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specifics of the gravity theories including changes be-
tween different gravity theories. Thus, the classical
evolution in the large scale is characterized by the con-
served quantityC(x) which encodes the information
about the spatial structure of the nontransient solution.
In order to have information about large scale struc-
ture, we need the information aboutΦ = C(x) which
must have been generated from quantum fluctuations
in the early inflationary stage of the universe; gravity
alone cannot generate the seed fluctuations out of the
spatially homogeneous and isotropic background.

We consider the quantum generation process in
unified forms. From Eq. (10) we can construct the
perturbed action in a unified form [4,5,8,11,12]

(20)δ2S = 1

2

∫
a3Q

(
Φ̇2 − c2

A

1

a2
Φ |γ Φ,γ

)
dt d3x.

This action as well as Eqs. (10), (17) was first derived
by Lukash in 1980 in the context of an ideal fluid [4],
and later was derived in the context of a field [5].

In order to handle the quantum mechanical gen-
erations of the scalar-type structure and the gravita-
tional wave, we regard the perturbed parts of the met-
ric and matter variables as Hilbert space operators,
Φ̂(x, t). Since we are considering a flat three-space
background, we may expand̂Φ in mode function ex-
pansion

(21)

Φ̂(x, t)=
∫

d3k

(2π)3/2
[
âkΦk(t)e

ik·x + â
†
kΦ

∗
k (t)e

−ik·x],
where Φk(t) is a mode function. The annihilation
and creation operatorŝak and â†

k follow the standard
commutation relations. In the quantization process of
the gravitational wave we need to take into account of
the two polarization states properly [3,12]. From our
perturbed action in Eq. (20) we haveπΦ ≡ ∂L/∂Φ̇ =
a3QΦ̇. From the equal-time commutation relation[
Φ̂(x, t), π̂Φ(x′, t)

] = iδ3(x − x′)
we can derive

(22)ΦkΦ̇
∗
k −Φ∗

k Φ̇k = i/
(
a3Q

)
.

Under theansatzs4

(23)z′′/z= n/η2, c2
A = constant,

4 For solutions in the case of more general ansatz, see [22].

the mode function has an exact solution

(24)

Φk(η)=
√
π |η|

2a
√
Q

[
c1(k)H

(1)
ν (x)+ c2(k)H

(2)
ν (x)

]
,

where ν ≡ √
n+ 1/4 and x ≡ cAk|η|. From the

quantization condition we have

(25)|c2|2 − |c1|2 = 1,

where for the gravitational wave this condition should
be met for each polarization state [12]. The power
spectrum based on the vacuum expectation value ofΦ̂

is

PΦ̂(k, η)≡
k3

2π2

∫ 〈
Φ̂(x + r, t)Φ̂(x, t)

〉
vace

−ik·r d3r

(26)= k3

2π2 |Φk(η)|2.

Assumingthe simplest vacuum state withc2 = 1 and
c1 = 0 which corresponds to the flat spacetime quan-
tum field theory vacuum state with positive frequen-
cies, in the large-scale limit we have5

(27)

P1/2
Φ̂

∣∣
LS = H

2π

1

aH |η|
Γ (ν)

Γ (3/2)

(
k|η|
2

)3/2−ν 1

cνA
√
Q
,

where we should consider additional
√

2 factor for
the gravitational wave which follows from proper
considering of the two polarization states [12]. We
have PΦ̂ |LS = constant,6 thus consistent with the
general large-scale behavior in Eq. (19). The spectral
indices are

nS − 1≡ d lnPϕv

d lnk
= 3− 2νs,

(28)nT ≡
d lnPCα

β

d lnk
= 3− 2νt .

5 For ν = 0 we have an additional 2 ln(cAk|η|) factor.
6 Using n ≡ q(q + 1) we can showz ∝ |η|−q andν = q + 1

2 ,
thusPΦ̂ |LS = constant forν > 0; for ν = 0 we additionally have
z∝ √|η| ln |η|, thusPΦ̂ |LS = constant as well.
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5. Slow-roll inflation

We consider situations without the fluid, thusc2
A = 1.

We introduce the slow-roll parameters [10]

ε1 ≡ Ḣ

H 2 , ε2 ≡ φ̈

H φ̇
, ε3 ≡ 1

2

Ḟ

HF
,

(29)ε4 ≡ 1

2

Ė

HE
, E ≡ F

(
ω+ 3Ḟ 2

2φ̇2F

)
.

Compared with the Einstein gravity in [23] we have
two additional parametersε3 and ε4 for the scalar-
type perturbation which reflect the effects of additional
parametersF andω in our generalized gravity; for
the tensor-type perturbation we have one additional
parameterε3 from F . From Eqs. (12), (13) we have
[10,12]

(30)

z′′s
zs

= a2
[
H 2(1− ε1 + ε2 − ε3 + ε4)(2+ ε2 − ε3 + ε4)

+H(−ε̇1 + ε̇2 − ε̇3 + ε̇4)

− 2
(3

2 − ε1 + ε2 − ε3 + ε4
)
H

ε̇3

1+ ε3

− ε̈3

1+ ε3
+ 2

ε̇2
3

(1+ ε3)2

]
,

(31)
z′′t
zt

= a2[H 2(1+ ε3)(2+ ε1 + ε3)+Hε̇3
]
,

and
∫ η
(1+ ε1) dη= −1/(aH).

Assumingε̇i = 0 we have(1 + ε1)η = −1/(aH),
thus ansatzs in Eq. (23) are satisfied with

ns = (1− ε1 + ε2 − ε3 + ε4)(2+ ε2 − ε3 + ε4)

(1+ ε1)2
,

(32)nt = (1+ ε3)(2+ ε1 + ε3)

(1+ ε1)2
.

In such a case the rest of the exact results in Section 4
are available. Since the large-scale structures are
generated during short time interval (about 60e-folds)
of the latest inflation, we anticipate time variation
of εi during that period is negligible; still this is an
assumptionwe are making in the following. Under
this situation the power-spectra of the two-types of
structures in the large-scale limit are given in Eq. (27)
with the spectral indices given as

nS − 1 = 3− √
4ns + 1,

(33)nT = 3− √
4nt + 1.

Thus, by imposing the condition of Zel’dovich spectra
(nS −1� 0 � nT ) which is consistent with the CMBR
observation, we can derive constraints onεi ’s, thus on
the parameters of the gravity theory (V , ω, andF ).

Now, to the first-order in the slow-roll parameters,
i.e., furtherassuming|εi | � 1, from Eq. (27) we can
derive

P1/2
ϕ̂δφ

∣∣
LS = H

|φ̇|P
1/2
δφ̂ϕ

∣∣∣∣
LS

= H 2

2π |φ̇|
1√
Zs

{
1+ ε1 + [

γ1 + ln (k|η|)]
(34)× (2ε1 − ε2 + ε3 − ε4)

}
,

P1/2

Ĉα
β

∣∣
LS = √

16πG
H

2π

1√
Zt

(35)

× {
1+ ε1 + [

γ1 + ln (k|η|)](ε1 − ε3)
}
,

whereγ1 ≡ γE + ln2− 2= −0.7296. . ., with γE the
Euler constant. We have

(36)Zs = ω− 24πGFε2
3/ε1

(1+ ε3)2
, Zt = 8πGF.

Thus, besidesε1, the scalar-type perturbation is af-
fected byε2, ε3 andε4 (thus,φ, F andω), whereas
the tensor-type perturbation is affected byε3 (thus,F )
only; see also Eq. (38).

The observationally relevant scales exit Hubble
horizon within about 60e-folds before the end of the
latest inflation. Far outside the horizon the quantum
fluctuations classicalize and we can identifyPΦ =PΦ̂

where PΦ is the power-spectrum based on spatial
averaging

PΦ(k, η)≡ k3

2π2

∫ 〈
Φ(x + r, t)Φ(x, t)

〉
xe

−ik·r d3r

(37)= k3

2π2
|Φ(k,η)|2,

with Φ(k,η) a Fourier transform ofΦ(x, η). SinceΦ
is conserved in the large-scale limit, the power-spectra
in Eqs. (34), (35) can beidentified as the classical
power-spectra at later epoch. We have in mind a
scenario in which the inflation based on a field or a
generalized gravity is followed by ordinary radiation
and matter dominated eras based on Einstein gravity.
We have shown in Eq. (19) that as long as the scale
remains in the super-horizon scaleΦ is conserved
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independently of the changing gravity theory from
one type to the other. Therefore, Eqs. (34), (35) are
now valid for the classical power-spectra. The spectral
indices of the scalar and tensor-type perturbations in
Eq. (28) become

nS − 1 = 2(2ε1 − ε2 + ε3 − ε4),

(38)nT = 2(ε1 − ε3).

For the scale independent Zel’dovich (nS − 1 � 0 �
nT ) spectra the quadrupole anisotropy becomes〈
a2

2

〉 = 〈
a2

2

〉
S

+ 〈
a2

2

〉
T

(39)= π

75
Pϕδφ + 7.74

1

5

3

32
PCαβ ,

which is valid for K = 0 = Λ; for a general situ-
ation with nonvanishingΛ, see [24]. The four-year
COBE–DMR data give〈a2

2〉 � 1.1 × 10−10, [25].
From Eqs. (34), (35) the ratio between two types of
perturbationsr2 ≡ 〈a2

2〉T /〈a2
2〉S becomes

(40)r2 = 13.8

(
−ε1

ω

8πGF
+ 3ε2

3

)
.

We kept the second term in the RHS because it is
the only nonvanishing term in the case of puref (R)
gravity [26]. In the limit of Einstein gravity we have
r2 = −13.8ε1 = −6.92nT which is independent ofV
and is the well known consistency relation. Notice that
r2 depends on the two additional parametersω and
F which characterize the generalized nature of our
gravity theories.

Inflation based on Einstein gravity with a mini-
mally coupled scalar field is a simple case withF =
1/(8πG) andω = 1. In this case we haveε3 = 0 = ε4
andZ = 1. The power spectra of slow-roll inflation
[23] belong to Eqs. (34), (35), (38). Accuracy of the
slow-roll approximation compared with the exact in-
tegration of the fundamental equation in Eq. (10) has
been discussed in [27]. For a recent attempt to consider
higher-order effects of the slow-roll parameters in a
perturbative approach, thus going beyond the ansatz
made in Eq. (23), see [28].

The presence ofF andω, thusε3, ε4 andZ’s in
Eqs. (34), (35), (38), (40) indicates the deviation from
the Einstein gravity. Inflationary spectra in various in-
flationary models based on generalized gravity theo-
ries made in [26,29] can be recovered by simply re-
ducing our general results in this Letter.

6. Discussions

As we have shown in this Letter, even in a class of
generalized gravity theories included in Eq. (1) we can
present the results quite similarly as in Einstein gravity
case and in unified forms. The effects of generalized
gravity appear in two additional parametersF andω
which are reflected in the two additional slow-roll pa-
rametersε3 andε4. One important underlying reason
for such simple results in apparently complicated and
diverse gravity theories belonging to Eq. (1) can be
traced to the conformal transformation property of the
gravity theory we are considering [30].

In addition to the coherent and unified presentation
of the classical evolution and quantum generation
processes, the slow-roll power spectra in Section 5 can
be regarded as new contributions of the present work.
These results, in fact, include results from most of
the inflationary scenarios based on generalized gravity
as well as Einstein gravity theory. In generic forms,
Eqs. (34), (35), (38) show the amplitudes and spectral
indices of the generated structures, and Eq. (40) shows
the ratio of gravitational wave contribution relative to
the scalar-type structure. Various previous studies on
the subject can be regarded as specific limits of these
generic results.
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