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Classical evolution and quantum generation in generalized gravity theories including string
corrections and tachyons: Unified analyses
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We present cosmological perturbation theory based on generalized gravity theories including string
theory correction terms and a tachyonic complication. The classical evolution as well as the quantum
generation processes in these varieties of gravity theories are presented in unified forms. These apply both
to the scalar- and tensor-type perturbations. Analyses are made based on the curvature variable in two
different gauge conditions often used in the literature in Einstein’s gravity; these are the curvature
variables in the comoving (or uniform-field) gauge and the zero-shear gauge. Applications to generalized
slow-roll inflation and its consequent power spectra are derived in unified forms which include a wide
range of inflationary scenarios based on Einstein’s gravity and others.
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I. INTRODUCTION

Cosmological linear perturbation theory [1] has central
importance in the current cosmological investigations of
the large-scale structure and the cosmic microwave back-
ground radiation. A rather successful scenario can be made
based on Einstein’s gravity with varying use of the diverse
(but ordinary) fluids and fields as the energy-momentum
content. Relativistic gravity theories more general than
Einstein’s gravity are ubiquitous in the literature; some
are variants of Einstein’s gravity, while others are more
generalized forms with natural correction terms arising in
the quantum corrections or in the attempt of unified theo-
ries such as string/M-theory program. Thus, it would be
interesting to formulate corresponding cosmological per-
turbation analyses in these generalized forms of relativistic
gravity theories. It would be naturally more interesting if
we could make a unified formulation of handling the
perturbations in the context of generalized theories includ-
ing Einstein’s theory as a case. This is our purpose of the
presentation. We consider generalized forms of gravity
theories expressed as actions in Eqs. (31), (45), (74),
(92), and (110).

In the literature, equations in two different gauge con-
ditions are popularly used. In terms of the three-space
curvature perturbation ’, the two gauges are the comoving
gauge v � 0 (or, equivalently, in the minimally coupled
scalar field, the uniform-field gauge �� � 0) and the zero-
shear gauge � � 0 conditions. As each of these two gauge
conditions fixes the temporal gauge mode completely, the
variables are equivalently gauge invariant and correspond
to the combinations ’v (or ’��) and ’� in Eq. (10). In the
presence of background curvature, we need generalization
of’v, which we call �, to have the unified form, and in the
case of the generalized gravity we also need generalization
of ’�, which we call �, to have the unified form; see
Eqs. (22), (38), (57), (84), and (100). In all the gravity
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theories we are considering, we can successfully present
the perturbation equations in exactly the same form as in
Einstein’s gravity. Thus, we can present the consequent
classical evolution and quantum generation processes in
unified forms. Such unified analyses are practically useful
to handle the structure evolution because it allows one to
handle situations when one type of gravity theory switches
to another type in the early universe.

In Sec. II we present our notation, summary of the gauge
issue, and the fundamental equations in a gauge-ready
form. In Sec. III we present the closed form equations
using � and �, which are generalizations of ’v and ’�,
respectively, in the cases of the fluid, field, and generalized
forms of gravity theories. In Sec. IV we present the unified
form equations for all the gravity theories considered in
this work and present a variety of exact and asymptotic
solutions available. In Sec. V we present the quantum
generation process in unified form starting from the action
formulation. An exact form of inflation generated power
spectrum is derived under an assumption of the back-
ground, which is quite general so that it includes various
inflation scenarios suggested in the literature as cases.
Thus, we present the final inflationary spectra in unified
forms which can be compared with the cosmic microwave
background radiation (CMB) and the large-scale structure
observations. Our classical evolution and the quantum
generation processes are presented for both the scalar-
type and the tensor-type perturbations in unified forms.
In Sec. VI we summarize the new discoveries in our
presentation and provide a discussion.
II. STRATEGY AND BASIC EQUATIONS

A. Notation

As the metric we consider the Robertson-Walker space-
time with the scalar- and tensor-type perturbations
-1  2005 The American Physical Society
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ds2 � �a2�1� 2
�d�2 � 2a2�;
d�dx



� a2�g�3�
� � 2’g�3�
� � 2�;
j� � 2C
��dx

dx�; (1)

where a��� is the cosmic scale factor and � is the confor-
mal time defined as cdt � ad�. We set c � 1 � �h. The
Greek indices 
, �, �, . . . indicate the space, and the Latin
indices a, b, c, . . . indicate the spacetime. The spacetime
dependent variables 
, �, �, and ’ are scalar-type per-
turbed order variables and C
� is a (transverse-tracefree)

tensor-type variable. Indices of C
� are based on g�3�
� and a

vertical bar indicates a covariant derivative based on g�3�
�.

The three-space metric g�3�
� indicates the background co-
moving three-space part of the Robertson-Walker metric
which is spatially homogeneous and isotropic; some of its
specific representations are

g�3�
�dx

dx� �

dr2

1� Kr2
� r2�d�2 � sin2�d�2�

�
1

�1� K
4 �r2�2

�dx2 � dy2 � dz2�

� d ��2 �

�
1����
K

p sin�
����
K

p
���
�
2
�d�2 � sin2�d�2�;

(2)

where we have

r �
�r

1� K
4 �r2

; �r �
���������������������������
x2 � y2 � z2

q
;

�� �
Z r dr�����������������

1� Kr2
p :

(3)

The K is the sign of the three-space curvature.
We ignore the vector-type perturbation (rotation) in this

paper; see Sec. VI for a summary. Our metric convention
follows Bardeen’s [2]. Our perturbation variables have
some kinematic interpretations. The kinematic quantities
in the normal frame are [3]

� � 3H � �; �
� � �;
j� � 1
3g

�3�

�
�� a2 _C�t�


�;

a
 � 
;
; R�h� �
1

a2
	6K � 4�
� 3K�’
;

(4)

where we introduced

� � a��� a _��; � � �K � 3H
� 3 _’�



a2
�:

(5)

An overdot denotes time derivative based on t, H � _a
a , and


 is a Laplacian operator based on g�3�
�. The �, �ab, and aa
are the expansion scalar, shear tensor, and the acceleration
vector, respectively; in the normal frame we have the
vanishing rotation tensor !
� � 0 based on the frame
vector [4]. From these we can interpret �, �, and ’ as
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the perturbed shear, the perturbed expansion, and the per-
turbed curvature of the normal-frame vector.

As the energy-momentum tensor we consider an
imperfect-fluid form including the scalar- and tensor-type
perturbations

T0
0 � �� �"� �"�; T0


 � ��"� p�v;
;

T
� � � �p� �p��
� ��

�;

(6)

where �

� is a tracefree anisotropic stress; �


� is based on

g�3�
�. An overbar indicates the background order quantities;
we ignore it unless necessary. The cosmological constant
� can be included by adding T���a

b � � �
8$G �

a
b to the

energy-momentum tensor; thus, � can be included by
adding "� � �p� � �

8$G to the background fluid quanti-
ties " and p. The entropic perturbation e is defined as

e � �p� c2s�"; c2s � _p= _": (7)

We decompose the anisotropic stress as

�
� �
1

a2

�
�;
j� �

1

3
g�3�
�
�

�
���t�


�; (8)

where ��t�

� is transverse and tracefree. In an ideal fluid we

have e � 0 and � � 0 � ��t�

�.

B. Gauge issue

Here we summarize the behaviors of our perturbation
variables under the gauge transformation and our strategy
of how to handle and use such degrees of freedom as an
advantage. Under the gauge transformation x̂a �
xa � 'a�xe� we have [2,3]


̂ � 
� _'t; �̂ � ��
1

a
't � a

�
'
a

�
�
;

�̂ � ��
1

a
'; ’̂ � ’�H't; �̂ � �� 't;

�̂ � ��

�
3 _H �




a2

�
't; �"̂ � �"� _"'t;

�p̂ � �p� _p't; v̂ � v�
1

a
't; �̂ � �;

��̂ � ��� _�'t; Ĉ
� � C
�; �̂�t�

� � ��t�


�;

(9)

where we used '0 � 1
a '

t and '
 � ';
; �� and �� are the
background and perturbed part of a scalar field ��x; t�.
Thus, using � instead of � and � individually, all our
perturbation variables are spatially gauge invariant.
However, all our scalar-type perturbation variables depend
on the temporal gauge transformation which will be used
as an advantage in our gauge-ready strategy [3]. Temporal
gauge fixing condition, fixing 't, applies only to the scalar-
type perturbation. To the linear order, we can impose any
one of the following temporal gauge conditions to be valid
at any spacetime point: the synchronous gauge (
 � 0),
-2
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the comoving gauge (v � 0), the zero-shear gauge (� �
0), the uniform-expansion gauge (� � 0), the uniform-
curvature gauge (’ � 0), the uniform-density gauge
(�" � 0), the uniform-pressure gauge (�p � 0), the
uniform-field gauge (�� � 0). Any linear combination
of these gauge conditions which can give a constraint on
't can be regarded as a suitable temporal gauge condition;
thus, we have an infinite number of temporal gauge con-
ditions available. In the synchronous gauge we set 
 � 0
in all coordinate systems which leave nonvanishing 't�x�
with general dependence on the spatial coordinate [see
Eq. (9)], whereas in the other gauge conditions mentioned
above we have 't � 0 after imposing any of the temporal
gauge condition in all coordinate systems, thus removing
the gauge mode completely. Thus, except for the synchro-
nous gauge condition, each of the other temporal gauge
fixing conditions completely removes the temporal gauge
mode. Later, we will present our fundamental set of scalar-
type perturbation equations in a naturally spatially gauge-
invariant form but without fixing the temporal gauge con-
ditions. The equations will be arranged so that we can
impose any of our fundamental gauge conditions easily
depending on the specific problems we encounter; thus, we
suggestively call our approach a gauge-ready formulation
[3].

We introduce several gauge-invariant combinations:

’� � ’�H�;

’v � ’� aHv;

�v � �� a
_"
"
v;

��’ � ���
_�
H
’ � �

_�
H
’��;

v� � v�
1

a
� � �

1

a
�v;

(10)

where � � �"=". The gauge-invariant combination ��’

is equivalent to �� in the uniform-curvature gauge which
takes ’ � 0 as the gauge condition, etc. Using our notation
for the gauge-invariant combinations, we can systemati-
cally construct and trace various gauge-invariant combina-
tions for a given variable [3]. As in the last two examples in
Eq. (10), our notation of gauge-invariant variables allows
algebra connecting different expressions of the same
gauge-invariant combinations. Compared with the notation
used by Bardeen in 1980 [5], ignoring the harmonic func-
tions, we have:

�H � ’�; �A � 
�; �m � ’v; *m � �v;

v�0�s � kv�; p$�0�
L � �p; p$�0�

T � �



a2
�: (11)

Later we will use ’v (or ’��) and ’� as the main varia-
bles. Considering Eqs. (4) and (6), we may regard the
gauge-invariant combinations ’v and ’� as the perturbed
063536
three-space curvature (’) in the comoving gauge (v � 0)
and the zero-shear gauge (�), respectively, based on the
normal-frame vector field.

C. Basic equations

The background evolution is governed by

H2 �
8$G
3

"�
K

a2
�

�

3
; _H � �4$G�"� p� �

K

a2
:

(12)

To the perturbed order, the scalar-type perturbations are
described by [2,3]

� � 3�� _’�H
� �



a2
�; (13)


� 3K

a2
’�H� � �4$G�"; (14)

��

� 3K

a2
� � 12$Ga�"� p�v; (15)

_��H�� 
� ’ � 8$G�; (16)

_�� 2H��

�
3 _H �




a2

�

 � 4$G��"� 3�p�; (17)

� _"� 3H��"� �p� � �"� p�
�
�� 3H
�




a
v
�
;

(18)

	a4�"� p�v
�

a4�"� p�
�

1

a

�

�

�p
"� p

�
2

3


� 3K

a2
�

"� p

�
:

(19)

These follow from Einstein’s equations and the energy and
momentum-conservation equations; Eq. (13) is a definition
of �, Eqs. (14)–(17) follow from G0

0, G0

, G


� � 1
3�



�G

�
�,

and G


 �G0

0 components of Einstein’s equation, respec-
tively, and Eqs. (18) and (19) follow from Tb0;b � 0 and
Tb
;b � 0, respectively. These equations are presented with-
out fixing the temporal gauge condition and using the
spatially gauge-invariant variables only. Thus, these are
presented in a gauge-ready form which allows us to choose
the temporal gauge condition depending on the situation as
an advantage in handling the problem. This set of equations
was first presented by Bardeen in Ref. [2]. As we are
considering the most general imperfect fluid, the above
equations are valid even in the context of generalized
gravity theories we are considering: the fluid quantities
", p, �", �p, �"� p�v, and � can be reinterpreted as
the effective fluid quantities; see Eq. (21) below and
Refs. [3,6].
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In the case of the gravitational wave, we have

�C

� � 3H _C
� �


� 2K

a2
C
� � 8$G��t�


� : (20)

In Eqs. (12)–(20) we presented the complete sets of
background and perturbed equations for a general imper-
fect fluid. In the case of fluid we include the most general
type of imperfect-fluid contributions for both the back-
ground and perturbation. In such forms the equations are
generally valid for the case of a scalar field and the other
generalized gravity theories, by reinterpreting the fluid
quantities as the effective fluid quantities. That is, by
arranging the gravitational field equation in the following
form:

Ga
b � 8$GTab; (21)

we reinterpret Tab as the effective energy-momentum tensor
[6]. Thus, in those generalized theories we will present
only the effective fluid quantities which together with the
general equations derived in the fluid in Eqs. (12)–(20)
provide a complete set of equations.
III. EQUATIONS IN TWO GAUGES

A. Fluid

We introduce the Field-Shepley combination [7]

� � ’v �
K=a2

4$G�"� p�
’�: (22)

We can derive [8]

_� �
H

4$G�"� p�
c2s


a2
’� �

H
"� p

�
e�

2

3




a2
�
�
;

(23)

H
a

�
a
H
’�

�
�
�

4$G�"� p�
H

�� 8$GH�: (24)

Equation (23) follows from taking a time derivative of
Eq. (22) and using Eqs. (13)–(16) and (19); we also need
v� � � 1

a �v in Eq. (10). Equation (24) follows from
Eq. (13) and using Eqs. (15) and (16) with v� � v� 1

a � �

� 1
aH �’v � ’��, which follows from Eq. (10). We can

combine Eqs. (23) and (24) to make closed form second-
order differential equations for both � and ’�:

H2c2s
a3�"� p�

�
a3�"� p�

H2c2s

�
_��

H
"� p

�
e�

2

3




a2
�
��	

�

� c2s



a2

�
�� 2

H2

"� p
�
�
; (25)
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"� p
H

�
H2

a�"� p�

�
a
H
’�

�
�

� 8$G
H2

"� p
�
�
�

� c2s



a2
’� � 4$G

�
e�

2

3




a2
�
�
: (26)

In an ideal fluid we have e � 0 � �. For a pressureless
medium we have c2s � 0; thus, instead of Eqs. (23) and
(25), we have

_� � 0: (27)

Equations (23)–(26) show basic forms of equations valid
even in the scalar field and generalized gravity theories to
be considered in this paper. Unified forms will be presented
in Sec. IV.

In the fluid context it is often convenient to have an
equation for density perturbation. The most convenient
(i.e., similar to the Newtonian) form is available in the
comoving gauge, thus equivalently using a gauge-invariant
combination �v [9]. Using Poisson’s relation

�

� 3K

a2
’� � 4$G"�v; (28)

which follows from Eqs. (14) and (15), Eq. (26) gives [9]

"� p

a2H"

�
H2

a�"� p�

�
a3"
H

�v

�
�
� 2

H2

"� p
�
� 3K��

�
�

� c2s



a2
�v �


� 3K

a2
1

"

�
e�

2

3




a2
�
�
: (29)

For the tensor mode Eq. (20) gives

1

a3
�a3 _C
��� �


� 2K

a2
C
� � 8$G��t�


�: (30)

The fluid perturbation and the gravitational wave were
studied in the context of the synchronous gauge (
 � 0)
by Lifshitz [1]. The zero-shear gauge (� � 0) to handle the
gravitational potential (’) and the comoving gauge (v �
0) for the density perturbation (�) were first studied by
Harrison [10] and Nariai [11], respectively.

B. Field

We consider an action for a minimally coupled scalar
field [12–14]

S �
Z
d4x

�������
�g

p
�

1

16$G
R�

1

2
�;c�;c � V���

�
: (31)

The gravitational field equation and the equation of motion
are

Gab � 8$G��;a�;b �
1
2�

;c�;cgab � Vgab�; (32)

��� V;� � 0: (33)

Equations (12)–(20) remain valid with the following back-
ground and perturbed order fluid quantities:
-4



. . . PHYSICAL REVIEW D 71, 063536 (2005)
" � 1
2
_�2 � V; p � 1

2
_�2 � V; (34)

�" � _�� _�� _�2
� V;���;

�p � _�� _�� _�2
� V;���; v �
1

a
��
_�
;

� � 0 � ��t�

� ;

(35)

where we expanded ��x; t� � ���t� � ���x; t�. Ad-
ditionally, from Eq. (33) we have the background and
perturbed equation of motion

��� 3H _�� V;� � 0; (36)

� ��� 3H� _��



a2
��� V;����

� _���� _
� � �2 ��� 3H _��
: (37)

As �� � 0 implies v � 0, the uniform-field gauge
(�� � 0) is equivalent to the comoving gauge (v � 0);
thus, ’v � ’��. Thus, Eq. (22) becomes

� � ’�� �
K=a2

4$G _�2
’�: (38)

We have

_� �
H

4$G _�2

c2A


a2
’�; (39)

H
a

�
a
H
’�

�
�

�
4$G _�2

H
�; (40)

where

c2A � 1� 3�1� c2s�K
�1; c2s �
_p
_"
� �1�

2 ��

3H _�
:

(41)

Equation (39) follows from taking a time derivative of
Eq. (38) and using Eqs. (13)–(16); we also need �"�� �

� _�2
��, which follows from Eq. (35). Equation (40)
follows from Eq. (13) and using Eqs. (15) and (16) with

��� � ��� _�� �
_�
H ��’�� � ’��, which follows from

Eq. (10). Equations (39) and (40) also follow from
Eqs. (23) and (24) using the effective fluid quantities in
Eqs. (34) and (35): from Eqs. (34) and (35) we have

e � �1� c2s��"�� � ��1� c2s�

� 3K

4$Ga2 ’�; (42)

where we used Eq. (28), and �"�� � �"v. Using Eq. (42)
and � � 0 in Eqs. (23) and (24), we can derive Eqs. (39)
and (40). By combining Eqs. (39) and (40), we have

H2c2A
a3 _�2

�
a3 _�2

H2c2A
_�
�
�

� c2A



a2
�; (43)

CLASSICAL EVOLUTION AND QUANTUM GENERATION
063536
_�2

H

�
H2

a _�2

�
a
H
’�

�
�
�
�

� c2A



a2
’�; (44)

which can be compared with the ideal fluid (thus sets e �
0 � �) equations in Eqs. (25) and (26). Thus, we have an
interesting conclusion: Compared with an ideal fluid, the
minimally coupled scalar field effectively has c2s replaced
by c2A, which becomes 1 for K � 0. The cA has the role of
wave speed of the perturbed field and the simultaneously
excited metric; interpretation of cA as the wave speed is
properly valid only for K � 0. Thus, for K � 0 the wave
propagation speed becomes 1. In the minimally coupled
scalar field cs cannot be interpreted as the wave propaga-
tion speed. This is because the scalar field has a nonvanish-
ing entropic perturbation as in Eq. (42), and thus cannot be
interpreted as an ideal fluid.

For the tensor mode, Eq. (30) remains valid in the field
situation with ��t�


� � 0. That is, the presence of a mini-
mally coupled scalar field (or fields) does not directly
affect the equation of tensor-type perturbation.

C. Generalized f��;R� gravity

We consider an action [3,6,15–17]

S �
Z
d4x

�������
�g

p
�
1

2
f��;R� �

1

2
!����;c�;c � V���

� L�m� � L�c�

�
; (45)

where L�c� represents additional correction terms to be
considered in Secs. III F and III G. This action without
L�c� includes the following gravity theories as a subset:
f�R� gravity which includes R2 gravity, the scalar-tensor
theory which includes the Jordan-Brans-Dicke theory, the
nonminimally coupled scalar field, the induced gravity, the
low-energy effective action of string theory, etc.; see
Ref. [17]. Although this generalized action by itself does
not have much physical meaning, there are some advan-
tages by analyzing perturbations in this general context: for
example, our results will be valid considering transitions
from one type of gravity theory to the other. The gravita-
tional field equation and the equation of motion are

Gab �
1

F

�
T�m�
ab �!

�
�;a�;b �

1

2
�;c�;cgab

�

�
1

2
�f� RF� 2V�gab � F;a;b � �Fgab � T�c�

ab

�
;

(46)
���
1

2!
�!;��

;c�;c � f;� � 2V;�� �
1

2!
T�c�; (47)
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where F � @f
@R . We have

��
�������
�g

p
L�m�� �

1
2

�������
�g

p
Tab�m��gab; ��

�������
�g

p
L�c�� �

1
2

�������
�g

p
Tab�c��gab: (48)

Equations (12)–(20) remain valid with the following effective fluid quantities:

8$G" �
1

F

�
1

2
! _�2 �

RF� f� 2V
2

� 3H _F� T�c�0
0

�
; 8$Gp �

1

F

�
1

2
! _�2 �

RF� f� 2V
2

� �F� 2H _F�
1

3
T�c�




�
;

(49)

8$G�" �
1

F

�
! _�� _��

1

2
�!;�

_�2 � f;� � 2V;����� 3H� _F�

�
3 _H � 3H2 �




a2

�
�F

� �3H _F�! _�2�
� _F��

�
�T�c�0

0 �
�F
F
T�c�0
0

��
;

8$G�p �
1

F

�
! _�� _��

1

2
�!;�

_�2 � f;� � 2V;����� � �F� 2H� _F�

�
� _H � 3H2 �

2

3


� 3K

a2

�
�F

� _F _
��! _�2 � 2 �F� 2H _F�
�
2

3
_F��

1

3

�
�T�c�



 �
�F
F
T�c�




��
;

8$GT0

 �

1

F

�
1

a
��! _���� � _F�H�F� _F
�;
 � T�c�0




�
;

8$G�

� �

1

F

�
1

a2

�
r
r� �

1

3
�
�


�
��F� _F�� � _F _C
� � �T�c�


� �
1

3
�
��T

�c��
�

�
; (50)
where we have

R � 6
�
2H2 � _H�

K

a2

�
; (51)

�R � 2
�
� _�� 4H��

�



a2
� 3 _H

�

� 2


� 3K

a2
’
�

� �"� 3�p: (52)

We have set T�m�
ab � 0. The scalar- and tensor-type fluid

quantities can be read from Eqs. (6) and (8) as
063536
�"� p�v � �
�1r
T0

;

� � 3
2a

2
�1�
� 3K��1��
j�
� 
�;

��t�

� � �


� �
1

a2

�
r
r� �

1

3
�
�


�
�;

�

� � T
� � 1

3�


�T

�
�:

(53)
The comoving gauge (v � 0) differs from the uniform-
field gauge (�� � 0); thus, ’�� � ’v. The equation of
motion gives
��� 3H _��
1

2!
�!;�

_�2 � f;� � 2V;�� � �
1

2!
T�c�: (54)

� ���

�
3H �

!;�

!
_�
�
� _��

�
�




a2
�

�!;�

!

�
;�

_�2

2
�

�
�f;� � 2V;�

2!

�
;�

�
�� � _� _
�

�
2 ��� 3H _��

!;�

!
_�2
�

� _��

�
1

2!
F;��R�

1

2!

�
�T�c� �

!;�

!
��T�c�

�
:

(55)

We have additionally located T�c�
ab and T�c� terms for later consideration of the string theory correction terms in Secs. III F

and III G. In this subsection we ignore these correction terms. From Eqs. (6), (50), and (53) we have

8$G�"� p�v �
1

aF
�! _���� � _F�H�F� _F
�; 8$G� �

1

F
��F� _F��; 8$G��t�


� � �
_F
F
C
�: (56)

Instead of Eq. (38), we introduce a more generalized form
-6
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� � ’�� � 2
K

a2
F

! _�2 � 3 _F2

2F

�; � � ’� �
�F�
2F

:

(57)

From Eqs. (13)–(15) and Eqs. (13), (15), and (16), respec-
tively, we can derive

_� �
2HF� _F

! _�2 � 3 _F2

2F

c2A


a2
�; (58)

H �
_F

2F

aF

�
aF

H �
_F

2F

�
�
�
�
! _�2 � 3 _F2

2F

2HF� _F
�; (59)

where

c2A � 1�

0@6�
2

��
_�
� 3

_F
F�

_E
E

H �
_F

2F

1AK
�1;

E � F
�
!�

3 _F2

2F _�2

�
:

(60)

In order to derive Eqs. (58) and (59) we follow the same
algebraic procedure as needed in the scalar field. By com-
bining Eqs. (58) and (59), we have

�H �
_F

2F�
2c2A

a3�! _�2 � 3 _F2

2F �

"
a3�! _�2 � 3 _F2

2F �

�H �
_F

2F�
2c2A

_�

#
�

� c2A



a2
�; (61)

! _�2 � 3 _F2

2F

HF� 1
2

_F

"
�H �

_F
2F�

2

a�! _�2 � 3 _F2

2F �

 
aF

H �
_F

2F

�

!
�
#
�

� c2A



a2
�:

(62)

We notice that cA can be interpreted as a wave speed of the
perturbed field as well as the simultaneously excited met-
ric; for K � 0 we have

cA � 1; (63)

and only in this case can we properly interpret cA as the
wave speed; c2A clearly differs from c2s � _p= _".

This unified result is valid for the gravities in the forms
either (i) F � F��� or (ii) F � F�R�. In the case of f �
f�R� without the field, the results in the above remain valid
with the following prescription: we remove � (! as well);
thus, we have E � 3

2
_F2, and set ’�� � ’�F. In the general

case with F � F��;R�, the situation corresponds to the
two component medium; see Sec. III D.

Using

�F� �
_F
H
�’� � ’���; (64)
063536
we have

’� �
H��

_F
2F ’��

H �
_F

2F

: (65)

As we are considering the linear theory, if the solution of
one variable is known in any one gauge, solutions of all the
other variables in the same gauge as well as in any other
gauge can be derived easily through linear algebra; our
gauge-ready form equations in Eqs. (13)–(19) and our
convention of the gauge-invariant variables in Eq. (10)
are useful to derive the remaining variables systematically.

For the tensor mode we have

1

a3F
�a3F _C
��� �


� 2K

a2
C
� � 0: (66)

This equation is valid for general algebraic function of
f��;R�. In the context of fluid formulation in Eq. (30),
the F term in Eq. (66) comes from the nonvanishing
effective anisotropic stress of our generalized gravity the-
ory in Eq. (56).

D. Conformal transformation

Although direct derivation of Eqs. (58) and (59) is not
complicated, there is another simple way. The gravity
theory in Eq. (45) can be transformed to Einstein’s gravity
through a conformal rescaling of the metric and rescaling
of the field. The end result is Einstein’s gravity with
complications appearing only in the modified form of the
field potential. Thus, using such transformation properties
we can derive the equations in generalized gravity from
equations in Sec. III B.

We have studied the conformal transformation proper-
ties in Refs. [6,18] and in a most general form in
Appendix A of Ref. [15]. Under the conformal transforma-
tion,

ĝ ab � �2gab; � �
��������������
8$GF

p
� e =

��
6

p

; (67)

with

d�̂ �

��������������������������������������������
1

8$G

�
!
F
d�2 � d 2

�s
: (68)

Equation (45) transforms to Einstein’s gravity with a modi-
fied potential

V̂ �
1

�16$GF�2
�2V � f� RF�: (69)

The form of d�̂ implies that, in order to have Einstein’s
gravity with one minimally coupled scalar field, we need a
certain condition on the form of f��;R�. We need either
f � F���R or a pure f�R� gravity without the field; if we
-7
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have f a nonlinear function of R with a field involved, we
will have Einstein’s gravity with two scalar fields.

Under such a transformation, with � � ���1� ���, we
have to the background order

â � a�; dt̂ � �dt; Ĥ �
1

�

�
H �

_�

�

�
;

_̂� �

�����������������������������������������
1

8$G

�
!
F

_�2 �
3 _F2

2F2

�s
;

(70)

and to the perturbed order

’̂ � ’� ��; 
̂ � 
� ��; �̂ � ��;

��̂
_̂�

�
��
_�
�
�F
_F
;

(71)

where

� �
��������������
8$GF

p
; �� �

�F
2F

: (72)

The following variables are invariant under the conformal
transformation:

d�; 
; k2; ’�� � �
H
_�
��’; C
�;

(73)

where k is the comoving wave number with 
 � �k2 in
the Fourier space. It would be a trivial exercise to derive
Eqs. (58) and (59) from Eqs. (39) and (40) using Eqs. (70)–
(73). We can also show that under the conformal trans-
formation we have �̂ � � and ’̂�̂ � �. Notice that ’��
and C
� are invariant under the conformal transformation.
063536
From this result we can draw an important conclusion that
the power spectra (both amplitudes and spectral slopes)
based on ’�� and C
� derived in the context of any given
frame is valid in any other frame.

However, for the two other types of gravity theories to be
considered in the following subsections, we have no such
transformation property available. We have to derive the
equations directly from the gravity theories and equations
of motion. The same algebraic procedures needed for the
scalar field also apply to these gravity theories in a rather
exact manner.

E. Tachyonic generalization

We consider an action [19]

S �
Z
d4x

�������
�g

p
�
1

2
f�R;�; X� � L�m� � L�c�

�
; (74)

where X � 1
2�

;c�;c, and L�c� includes additional correc-
tion terms to be considered in Secs. III F and III G. This
action includes the generalized f��;R� gravity in Eq. (45)
as a case. The gravitational field equation and the equation
of motion are

Gab �
1

F

�
T�m�
ab �

1

2
�f� RF�gab � F;a;b � �Fgab

�
1

2
f;X�;a�;b � T�c�

ab

�
; (75)

�f;X�
;c�;c � f;� � T�c�: (76)

Equations (12)–(20) remain valid with the following
effective fluid quantities:
8$G" �
1

F

�
f;XX�

FR� f
2

� 3H _F� T�c�0
0

�
; 8$Gp �

1

F

�
�
FR� f

2
� �F� 2H _F�

1

3
T�c�




�
; (77)

8$G�" �
1

F

�
�

1

2
�f;���� f;X�X� �

1

2
_�2�F;X�R� f;X���� f;XX�X� � f;X _�� _�� 3H� _F

�

�
3 _H� 3H2 �




a2

�
�F� _F�� �3H _F� f;X _�2�
�

�
�T�c�0

0 �
�F
F
T�c�0
0

��
;

8$G�p �
1

F

�
1

2
�f;���� f;X�X� � � �F� 2H� _F�

�
� _H � 3H2 �

2

3


� 3K

a2

�
�F�

2

3
_F�� _F _
�2� �F�H _F�


�
1

3

�
�T�c�



 �
�F
F
T�c�




��
;

8$GT0

 �

1

F

�
1

a

�
1

2
f;X _���� � _F�H�F� _F


�
;

� T�c�0




�
;

8$G�

� �

1

F

�
1

a2

�
r
r� �

1

3
�
�


�
��F� _F�� � _F _C
� � �T�c�


� �
1

3
�
��T

�c��
�

�
; (78)
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where we have

X � �1
2
_�2; �X � � _�� _�� _�2
; (79)

and R and �R are given in Eqs. (51) and (52). The equation
of motion gives

1

a3
�a3 _�f;X�� � f;� � T�c�; (80)

f;X

�
� ���

�
3H �

_f;X
f;X

�
� _��




a2
��

� _�
�
3 _’� _
�




a2
�
��

� 2f;�
�
1

a3
�a3 _��f;X��

� �f;� � �T�c�; (81)

where

�f � f;���� f;X�X � f;R�R: (82)
063536
We have located T�c�
ab and T�c� terms for later consideration

of the string theory correction terms. In the following, we
ignore the correction terms. From Eqs. (6), (50), and (53)
we have

8$G�"� p�v � �
1

aF

�
1

2
f;X _���� � _F�H�F� _F


�
;

8$G� �
1

F
��F� _F��;

8$G��t�

� � �

_F
F
C
�: (83)

We assume F � F���. From Eq. (83) we notice that the
uniform-field gauge differs from the comoving gauge.
Instead of Eq. (38), we introduce a more generalized form

� � ’�� �
K

a2
2F

Xf;X � 3 _F2

2F

�; (84)

where � is the same as in Eq. (57). From Eqs. (13)–(15)
and Eqs. (13), (15), and (16), respectively, we can derive
_� �
2HF� _F

Xf;X � 3 _F2

2F

c2A


a2
�; (85)

H �
_F

2F

aF

 
aF

H�
_F

2F

�

!
�

�
Xf;X � 3 _F2

2F

2HF� _F
�; (86)

where

c2A �
Xf;X � 3 _F2

2F

Xf;X � 2X2f;XX � 3 _F2

2F

(
1�

"
3�

X�f;X � 2Xf;XX� �
3 _F2

2F

Xf;X � 3 _F2

2F

 
3�

_X
X � 3 _F

F�
_E
E

H �
_F

2F

!#
K
�1

)
; (87)

E � �
F
2X

�
Xf;X �

3 _F2

2F

�
: (88)

Equation (65) remains valid. By combining Eqs. (85) and (86), we have

�H�
_F

2F�
2c2A

a3�Xf;X � 3 _F2

2F �

"
a3�Xf;X � 3 _F2

2F �

�H �
_F

2F�
2c2A

_�

#
�

� c2A



a2
�; (89)

Xf;X � 3 _F2

2F

HF� 1
2

_F

"
�H �

_F
2F�

2

a�Xf;X � 3 _F2

2F �

 
aF

H�
_F

2F

�

!
�
#
�

� c2A



a2
�: (90)
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c2A differs clearly from c2s � _p= _". Contrary to the minimally coupled scalar field and the generalized f��;R� gravity
theory, the wave speed is nontrivial even for K � 0. For K � 0 we have

c2A �
Xf;X � 3 _F2

2F

Xf;X � 2X2f;XX � 3 _F2

2F

: (91)

For the tensor mode, Eq. (66) remains valid exactly.

F. String corrections

We consider an action in Eq. (45) with the following additional corrections in the action [20,21]:

L�c� � �1
2'���	c1R

2
GB � c2Gab�;a�;b � c3���;c�;c � c4��;c�;c�

2
; (92)

where R2
GB � RabcdRabcd � 4RabRab � R2. Corrections to the gravitational field equation and the equation of motion are1

T�c�
ab � �c1	�

1
2R

2
GBgab � 4RacRcb � 4RcdRacbd � 2RacdeRbcde � 2RRab�'� 4�';cdRacbd � �'Rab � 2';c�bRca�

� 1
2';a;bR� � 2�2';cdRcd � �'R�gab
 � c2f'�

1
2Rab�

;c�;c �
1
2R�;a�;b � 2Rc

�a�;b��;c� �
1
2��'�;a�;b�

� 1
2�'�

;c�;c�;a;b � �'�;c�;�a�;b�c �
1
2	'G

cd�;c�;d � �'�;c�;d�;cd � ��'�;c�;c�
gabg � c3	�'�;c�;c�;�a�;b�

� '���;a�;b �
1
2�'�

;c�;c�;d�;dgab
 � c4'�;c�;c��2�;a�;b �
1
2�

;d�;dgab�; (93)
T�c� � c1';�R
2
GB � c2G

ab�';��;a�;b � 2'�;a;b� � c3	';����;a�;a � ��'�;a�;a� � 2�'���;a�;a


� c4	';���;a�;a�
2 � 4�'�;a�;b�;b�;a
: (94)

The first five terms in the first line in the right-hand side of Eq. (93) vanish because we have �
R �������

�g
p

R2
GBd

4x � 0.
Equations (12)–(20) remain valid with the same effective fluid quantities in Eqs. (49) and (50) and the following

correction terms. To the background order, we have

T�c�0
0 � �12c1H

�
H2 �

K

a2

�
_'�

3

2
c2

�
3H2 �

K

a2

�
' _�2 �

1

2
c3� _'� 6H'� _�3 �

3

2
c4' _�4;

T�c�


 � �12c1

��
H2 �

K

a2

�
�'� 2H� _H �H2� _'

�
�

3

2
c2 _�

��
2 _H � 3H2 �

K

a2

�
' _�� 4H' ��� 2H _' _�

�

�
3

2
c3 _�2�2' ��� _' _�� �

3

2
c4' _�4; (95)
T�c� � 24c1� _H �H2�

�
H2 �

K

a2

�
';� � 3c2

�
�

�
H2 �

K

a2

�
� _' _��2' ��� � 2H

�
2 _H � 3H2 �

K

a2

�
' _�

�
� c3 _�	 �' _��3 _' ���6'� _H _��2H ��� 3H2 _��
 � c4 _�2��3 _' _��12' ��� 12H' _��: (96)

To the perturbed order, assuming K � 0, we have2
1Another form can be found in Eqs. (5–7) of Ref. [21] with a couple of minor typos in Eq. (5): these are the fourth term in the fourth
line (��6 ! �;�6) and the sixth term in the fifth line ('�"7 ! �"7 ).

2Although Eqs. (97) and (98) were not presented in Ref. [21], these were derived together with Cyril Cartier while preparing
Ref. [21].
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�T�c�0
0 � �4c1H

�
3H2� _'� 3H _'���H
� �




a2
�H�'� 2 _'’�

�
� c2 _�

�
9

2
H2 _��'� 9H2'� _�

� 2H'



a2
��� ' _�

�
3H�� 9H2
�




a2
’
��

�
1

2
c3 _�2

�
3� _'� 6H'�� _�� 2'




a2
��

� _��� _'� 6H�'� � 2' _��� 2 _��2 _'� 9H'�

�
�

3

2
c4 _�3�4'� _�� _��'� 4' _�
�;

�T�c�


 � 4c1

�
�3H2� �'� 6H� _H �H2�� _'� 2� _H �H2�




a2
�'� 2H _' _��2�H �'� _H _'�3H2 _'��

� 3H2 _' _
�6H�H �'� 2 _H _'�H2 _'�
� 2



a2
� �'’�H _'
�

�
� c2

�
6H' _�� ��� 3�2 _H' _�

� 2H' ��� 3H2' _�� 2H _' _��� _�� 3H _�2� _'�
3

2
_��2 _H _��4H ��� 3H2 _���'� ' _�2 _�

� _�� _' _��2' ��� 3H' _���� 6H' _�2 _
� 9 _�� _H' _�� 2H' ���H2' _��H _' _��


�



a2
	2� _' _��' ���H' _����� _�2�'� ' _�2�’� 
�


	
�

3

2
c3 _�	2' _�� ��� �3 _' _��4' ���� _�

� _�2� _'� 2 _� ���'� 2' _�2 _
� 4� _' _�2 � 2' _� ���

 �
3

2
c4 _�3�4'� _�� _��'� 4' _�
�;

�T�c�0

 �

1

a
r


�
4

3
c1H

�
3H� _'� 3H2�'� 2 _'

�
��




a2
�
�
� 3H _'


�
� c2 _�

�
�2H'� _�� 3H2'��

�H _��'�
1

3
' _�

�
�� 6H
�




a2
�
��

�
1

2
c3 _�2	2'� _�� � _'� 6H'���� _��'� 2' _�



� 2c4' _�3��
	
;

�T�c�

� �

1

3
�
��T

�c��
� �

1

a2

�
r
r� �

1

3
�
�


��
4c1	H _' _���H �'� _H _'�H2 _'��� �'’�H _'
� � _H �H2��'


�
1

2
c2	 _�2�'� 2� _' _��' ���H' _����� ' _�2�’� 
� _�� � _�� _' _��2' ���H' _���


	

� 4c1

�
�H _' _C
��

� � 3H2 _' _C
� � �'



a2
C
�

�
�

1

2
c2

�
�' _�2 _C
��

� � 3H _�2' _C
� � ' _�2 


a2
C
�

�
; (97)

�T�c� � c1�';�� �R2
GB��� ';��R

2
GB� � c2

�
�

�
6H2'� ��� 3H�4 _H'�H _'� 6H2'�� _�� 2�2 _H � 3H2�'




a2
��

�

� 3H	H _�� _'� 2�H ��� 2 _H _��3H2 _���'
 � 2



a2
	2H' _�
� � _' _��2' ��� 2H' _��’


� 2'	2H _� _���2H ��� 2 _H _��9H2 _���
 � 2H _' _���� 3H
� � 6H'	H _� _
��2H ��� 4 _H _��3H2 _��


	

� c3

�
3 _�� _'� 4H'�� ��� 	2 �' _��3 _' ���12'�3H2 _�� _H _��H ���
� _�� 	 _' _��4'� ��� 2 _�H�





a2
��

� _�
�

_�� �'� 3 ��� _'� 6�2H ��� _H _��3H2 _���'� _�



a2
�'
�
� 2' _�	 _� _��2�� ��� 3H _��


� 4 _�2 _
� _'� 3'H� � 4 �' _�2
� 12 _' _� ��
� 2' _�
�
9�2H ��� _H _��2H2 _�� � _�




a2

�


	

� c4

�
� _�

�
12' _�� ��� 3�3 _' _��8' ��� 12H' _��� _�� 4' _�




a2
��

�
� 4' _�3��� 3 _
�

� 3 _�2	 _�� _'� 4� ���H _���'
 � 12
 _�2	 _' _��'�4 ��� 3H _��

	
; (98)

where
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�R2
GB � 24H2� _H�H2�;

�R2
GB � 4H2�R� 16 _H

�
H��




a2
’
�
;

(99)

and R and �R are given in Eqs. (51) and (52).
In this and the next subsections, for simplicity, we

assume K � 0; we believe it is possible, though perhaps
tedious, to derive corresponding equations for general K in
similar forms. We introduce
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� � ’��; � � ’� �
_F�Qa

2F�Qb

�F�
_F
: (100)

From Eqs. (13)–(15) and Eqs. (13), (15), and (16), respec-
tively, we have

_� � 2
�H �

_F�Qa
2F�Qb

��F� 1
2Qb�

! _�2 � 3 � _F�Qa�
2

2F�Qb
�Qc




a2
�; (101)
H�
_F�Qa

2F�Qb

a�F� 1
2Qb�

"
a�F� 1

2Qb�

H�
_F�Qa

2F�Qb

�

#
�

�
1

2

! _�2 � 3 � _F�Qa�
2

2F�Qb
�Qc �Qd �

_F�Qa
2F�Qb

Qe � �
_F�Qa

2F�Qb
�2Qf

�H �
_F�Qa

2F�Qb
��F� 1

2Qb�
�; (102)

where

Qa � �4c1 _'H2 � 2c2' _�2H � c3' _�3; Qb � �8c1 _'H � c2' _�2;

Qc � �3c2' _�2H2 � 2c3 _�3� _'� 3'H� � 6c4' _�4; Qd � �2c2' _�2 _H � 2c3 _�2� _' _��' ��� ' _�H� � 4c4' _�4;

Qe � �16c1 _' _H�2c2 _�� _' _��2' ��� 2' _�H� � 4c3' _�3; Qf � 8c1� �'� _'H� � 2c2' _�2: (103)

By combining Eqs. (101) and (102), we have

�H �
_F�Qa

2F�Qb
�2

a3�! _�2 � 3 � _F�Qa�
2

2F�Qb
�Qc�

"
a3�! _�2 � 3 � _F�Qa�

2

2F�Qb
�Qc�

�H �
_F�Qa

2F�Qb
�2

_�

#
�

� c2A



a2
�; (104)

! _�2 � 3 � _F�Qa�
2

2F�Qb
�Qc �Qd �

_F�Qa
2F�Qb

Qe � �
_F�Qa

2F�Qb
�2Qf

�H �
_F�Qa

2F�Qb
��F� 1

2Qb�

(
�H�

_F�Qa
2F�Qb

�2

a	! _�2 � 3 � _F�Qa�
2

2F�Qb
�Qc �Qd �

_F�Qa
2F�Qb

Qe � �
_F�Qa

2F�Qb
�2Qf


�

"
a�F� 1

2Qb�

H �
_F�Qa

2F�Qb

�

#
�
)
�

� c2A



a2
�; (105)
where

c2A � 1�
Qd �

_F�Qa
2F�Qb

Qe � �
_F�Qa

2F�Qb
�2Qf

! _�2 � 3 � _F�Qa�
2

2F�Qb
�Qc

: (106)

A closed form second-order equation in terms of � was
derived in Refs. [20,21]. Using Eq. (64), we have

’� �
H��

_F�Qa
2F�Qb

’��

H�
_F�Qa

2F�Qb

: (107)

Notice that the presence of any ci terms affects cA in
nontrivial ways.

For the tensor mode, we have [20,21]

1

a3Qt
�a3Qt

_C
��
� � c2T




a2
C
� � 0; (108)

where

Qt � F�
1

2
Qb; c2T � 1�

Qf

2F�Qb
: (109)
This equation is valid for general algebraic function of
f��;R�. From this wave equation we can read that cT
has a role of the gravitational wave propagation speed.
cT is affected by the presence of the c1 and c2 correction
terms only.

G. String-axionic correction

We consider an action in Eq. (45) with the following
additional correction term [22]:

L�c� �
1
87���R

~R; (110)

where R ~R � �abcdRab
efRcdef with �abcd a totally anti-

symmetric Levi-Civita tensor density. Corrections to the
gravitational field equation and the equation of motion are

T�c�
ab � �a

cde�7;e;fR
f
bcd � 27;eRbc;d�; (111)

T�c� � �1
47;�R

~R: (112)

Assuming K � 0, the only nonvanishing contribution is
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T�c�

� �

1

a
*
��	� �7�H _7� _C��;� � _7D��;�
 � �
$ ��;

(113)

T�c� � 0; (114)

where

D
� � �C
� � 3H _C
� �



a2
C
�; (115)

and we introduced *
�� � a4 ��0
��, which is based on
g�3�
�. Thus, the string-axion correction term 7R ~R does not
affect the background equations nor the scalar-type pertur-
bation. Thus, Eqs. (57)–(65) in the generalized f��;R�
gravity remain valid. It affects, however, the tensor mode,
and the �
;�� component of the field equation, or
Eqs. (20), (50), and (53), give

1

a3F
�a3F _C
��

� �



a2
C
� �

2

aF
*
�

��	� �7�H _7� _C���

� _7D���
;� � 0: (116)

This equation is more general than the one derived in
Ref. [22]; it includes our generalized gravity coupling
f��;R� in its most general algebraic form. We expand
[23,24]

C
��x; t� �
��������
Vol

p Z d3k

�2$�3
X
‘

e�‘�
��k�h‘k�t�e
ik�x; (117)

where e�‘�
� is the circular polarization tensor (‘ � L;R)

with the property ik�*
��e
�‘�
�� � k<‘e

�‘�

� (<L � �1 and

<R � �1). We have

1

a3Qt
�a3Qt

_h‘k�
� �

k2

a2
h‘k � 0; (118)

where

Qt � F� 2<‘ _7k=a: (119)

To make this equation similar to the other gravity theories,
we may set � � h‘k. We notice that the presence of a
string-axionic correction term leads to asymmetric genera-
tion and evolution of the two polarization states of gravi-
tational wave. However, the wave propagation speed
remains cA � 1.
IV. CLASSICAL EVOLUTION: UNIFIED FORM

A. Equations

All the basic scalar-type perturbation equations consid-
ered in Secs. III A, III B, III C, III D, III E, III F, and III G
can be written in the following forms:

_� � 2x1



a2
�; (120)
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1

x2
�x2��� �

1

2
x3�: (121)

Notice that in these forms the normalization of x2 is
arbitrary. In order to be consistent in unified form in the
action formulation in Eq. (138), we fix the normalization in
the following way: we read x2 directly from Eqs. (59), (86),
and (102), whereas from Eqs. (24) and (40) we read x2 �
1

8$G
a
H . In Einstein’s gravity limit we have F � 1

8$G .
Introducing

�z � cAz �
������������
ax2x3

p
; cA �

���������
x1x3

p
;

~v � z�; u � x2
1

�z
�;

(122)

we have

~v �
2

cA �z
��zu�0; u �

1

2

�1 z

cA

�
~v
z

�
0
; (123)

where a prime indicates a time derivative based on � with
dt � ad�. Thus, we have

~v 00 �

�
c2A
�

z00

z

�
~v � a2z

�
1

az2
�az2 _��� � c2A




a2
�
�
� 0;

(124)

u00 �
�
c2A
�

�1=�z�00

�1=�z�

�
u �

a2x2
�z

�
�z2

ax2

�
a

�z2
�x2���

�
�

� c2A



a2
�
	
� 0: (125)

In these forms of the wave equation, cA has the role of wave
speed of the fluctuating fluid or field and the simulta-
neously excited metric. For convenience, we summarize
various coefficients in Table I.

For the tensor mode, using

zt � a
������
Qt

p
; vt � zt�; (126)

with � � C
� or h‘k, we have

v00t �
�
c2T
�

z00t
zt

�
vt � a2zt

�
1

az2t
�az2t _��� � c2T




a2
�
�
� 0:

(127)

Thus, it can be absorbed to Eq. (124) as a unified form. We
summarize various coefficients in the gravitational wave in
Table II.

Equations (124) and (127) in the context of Einstein’s
gravity are the starting point of diverse analyses in the
context of inflationary structure generation based on quan-
tum fluctuations. In this work we have shown that these
equations are generally valid in a wide variety of gravity
theories we are considering.
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TABLE I. Scalar-type perturbation: We present the coefficients and definitions used in our unified formulations of the scalar-type
perturbation in Secs. IV and V. We introduce x4 � ! _�2 � 3	� _F�Qa�

2=�2F�Qb�
 �Qc �Qd � 	� _F�Qa�=�2F�Qb�
Qe �

	� _F�Qa�=�2F�Qb�

2Qf. Except for the string corrections in the last column, the other situations are valid considering general

K; for c2A we present results assuming K � 0.

Fluid Field f��;R� gravity Tachyonic String corrections

� � ’v � �K=a2�
�	1=4$G�"� p�
’�

’v � �K=a2�
��1=4$G _�2�’�

’�� � �K=a2�
�f2F=	! _�2 � �3 _F2=2F�
g�

’�� � �K=a2�

�f2F=	Xf;X � �3 _F2=2F�
g�
’��

� � ’� ’� ’� � ��F�=2F� ’� � ��F�=2F� ’� � 	� _F�Qa�=�2F�Qb�
��F�= _F�

x1 � 	H=8$G�"� p�
c2s �H=8$G _�2�c2A f�HF� 1
2

_F�=	! _�2�

�3 _F2=2F�
gc2A

f�HF� 1
2

_F�=	Xf;X�
�3 _F2=2F�
gc2A

f	H � � _F�Qa�=�2F�Qb�
�F
� 1

2Qb�g=f! _�2 � 3	� _F�Qa�
2=

�2F�Qb�
 �Qcg

x2 � �1=8$G��a=H� �1=8$G��a=H� aF=	H � � _F=2F�
 aF=	H � � _F=2F�
 a�F� 1
2Qb�=fH

�	� _F�Qa�=�2F�Qb�
g

x3 � 8$G	�"� p�=H
 8$G� _�2=H� 	! _�2 � �3 _F2=2F�
=
�HF� 1

2
_F�

	Xf;X � �3 _F2=2F�
=
�HF� 1

2
_F�

�1=fH � 	� _F�Qa�=�2F�Qb�


��F� 1
2Qb�g�x4

c2A � c2s �� _p= _"� 1 1 	Xf;X � �3 _F2=2F�
=
	Xf;X � 2X2f;XX�
�3 _F2=2F�


x4=f! _�2 � 3	� _F�Qa�
2=

�2F�Qb�
 �Qcg

�z � �a=H�
��������������
"� p

p
�a=H� _� fa=	H � � _F=2F�
g

�
�������������������������������������
! _�2 � �3 _F2=2F�

q fa=	H � � _F=2F�
g

�
�������������������������������������
Xf;X � �3 _F2=2F�

q a=fH � 	� _F�Qa�=�2F�Qb�
g
�����
x4

p

u � 	1=�8$G
��������������
"� p

p
�
� �1=8$G _��� 	F=

�������������������������������������
! _�2 � �3 _F2=2F�

q

� 	F=

�������������������������������������
Xf;X � �3 _F2=2F�

q

� 	�F� 1

2Qb�=
�����
x4

p

�

3The roles reverse in the collapsing phase. In a collapsing
phase the d mode rapidly grows and unambiguously becomes
singular as the background approaches a singularity [25].

JAI-CHAN HWANG AND HYERIM NOH PHYSICAL REVIEW D 71, 063536 (2005)
B. Solutions

We have the following general solutions. We introduce
the Fourier transformations of perturbation variables. Since
we are considering linear-order perturbation, the equations
of the Fourier transformed variables satisfy the same equa-
tions as in the original configuration space with 
 � �k2.
Thus, we do not distinguish explicitly the Fourier variables
from the original ones.

(1) In the large-scale limits, with c2Ak
2 � z00=z and

�1=�z�00=�1=�z�, we have

��k; �� �
1

z
~v

� C�k�
�
1� k2

�Z �
�z2
�Z � d�

z2

�
d�

�
Z �

�z2d�
Z � d�

z2

�	
� 2~d�k�k2

Z � d�

z2
;

(128)

��k; �� �
�z
x2
u

� C�k�
1

2x2

Z �
�z2d�� ~d�k�

1

x2

�
1� k2

�Z � 1

z2

�

�Z �
�z2d�

�
d��

Z �
�z2d�

Z � d�

z2

�	
:

(129)

The C (d) mode is relatively growing (decaying) in the
063536
expanding phase of the background world model.3 Notice
that, to the leading order in the large-scale expansion, the C
mode of � remains constant, whereas the one of �
changes its behavior according to the background evolu-
tion. Thus, ignoring the transient mode, we have

��k; �� � C�k�: (130)

It is remarkable that the constant nature of � in the
expanding phase is valid independently of changing
(i) equation of state p�"�, (ii) field potential V���, and
(iii) gravity theories f��;R; X�, !���, '���, and 7���.

(2) In the small-scale limits, with c2Ak
2 � z00=z and

�1=�z�00=�1=�z�, we have

~v�k; �� � z� � cv1
eicAk� � cv2

e�icAk�; (131)

u�k; �� �
x2
�z
� �

i
2k

��cv1
eicAk� � cv2

e�icAk��; (132)

where we assumed cA � constant.
Although expressed in general forms, considering the

complications in c2A for the field and generalized gravities,
these solutions in (1) and (2) are properly applicable for
K � 0.
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TABLE II. Tensor-type perturbation: continuation of Table I for the tensor-type perturbation
(gravitational wave). In the cases of the string corrections and the string axion, we assume K �
0; for c2T we present results assuming K � 0.

Fluid, field f��;R� gravity, tachyonic String corrections String axion

zt � a�1=
����������
8$G

p
� a

����
F

p
a

�������������������
F� 1

2Qb

q
a
�����������������������������
F� 2<‘ _7k=a

p
c2T � 1 1 1� 	Qf=�2F�Qb�
 1
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(3) We have exact solutions under

z / j�jq; c2A � constant: (133)

We have

z00

z
�
q�q� 1�

�2 �
n

�2 ; (134)

and exact solutions are

��k; �� �

�����������
$j�j

p
2z

	c1�k�H
�1�
7 �cAkj�j�

� c2�k�H
�2�
7 �cAkj�j�
; (135)

��k; �� � �

�����������
$j�j

p
2z

acA
2kx1

	c1�k�H
�1�
7�1�cAkj�j�

� c2�k�H
�2�
7�1�cAkj�j�
; (136)

where

7 � 1
2 � q �

������������
n� 1

4

q
: (137)

The normalization is still arbitrary; see Eq. (141) for a
normalization assuming the vacuum expectation value.

According to the prescription in Eq. (126), the above
solution for � applies to the gravitational wave as well; see
Eq. (150) for proper normalization.
V. QUANTUM GENERATION: UNIFIED FORM

A. Quantization

The perturbed action becomes [13,26]

�2S �
1

2

Z
az2

�
_�2 � c2A

1

a2
�;
�;


�
dtd3x

�
1

2

Z �
~v02 � c2A~v

;
~v;
 �
z00

z
~v2

�
d�d3x: (138)

The mode expansion is

�̂�x; t� �
Z d3k

�2$�3=2
	âk�k�t�eik�x � âyk�

�
k�t�e

�ik�x
;

	âk; âk0 
 � 0; 	âyk; â
y
k0 
 � 0;

	âk; â
y
k0 
 � �3�k� k0�:

(139)

The conjugate momentum is $� � @L=@ _� � az2 _�. The
063536
quantization condition 	�̂�x; t�; $̂��x0; t�
 � i�3�x� x0�

gives 	�̂�x; t�; _̂
��x0; t�
 � �i=az2��3�x� x0�, which leads

to the Wronskian condition

�k
_��
k ���

k
_�k �

i

az2
: (140)

If the background satisfies Eq. (133), we have Eqs. (135)
and (136) as exact solutions. In terms of the mode function,
we have [14,27]

�k��� �

�����������
$j�j

p
2z

	c1�k�H
�1�
7 �cAkj�j� � c2�k�H

�2�
7 �cAkj�j�
;

(141)

�k��� � �

�����������
$j�j

p
2z

acA
2kx1

	c1�k�H
�1�
7�1�cAkj�j�

� c2�k�H
�2�
7�1�cAkj�j�
; (142)

where

jc2�k�j
2 � jc1�k�j

2 � 1; (143)

which follows from the quantization condition in
Eq. (140). The two-point function is defined as [14,28]

G��x
0; x00� � h�̂�x0��̂�x00�ivac

�
Z 1

0

k2dk

2$2 j0�kjx
0 � x00j��k��

0���
k��

00�;

(144)

where hivac is a vacuum expectation value with âkjvaci � 0
for every k; x � �x; ��. Using Eq. (141) as the mode-
function solution, and assuming the simple vacuum state
c2 � 1 and c1 � 0, we have [14,27]

G��x0; x00� �
�14 � 72� sec�$7�

16$c3A�
0�00z0z00

� F
�
3

2
� 7;

3

2
� 7; 2; 1�

c2A
�
2 � 
x2

4c2A�
0�00

�
;

(145)

which is valid for 7 < 3
2 and c2A
�

2 �
x2 < 0; 
�2 �

��0 � �00�2 and 
x2 � �x0 � x00�2.

B. Power spectra

The seed generation process involves three steps.
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(1) We evaluate the power spectrum based on a vacuum
expectation value introduced as

P �̂�k; t� �
k3

2$2

Z
h�̂�x� r; t��̂�x; t�ivace�ik�rd3r

�
k3

2$2 j�k�t�j2: (146)

In the large-scale limit using the mode-function solution in
Eq. (141), we have

P 1=2
�̂

�k; �� �
H
2$

1

aHj�j
!�7�

!�3=2�

�
kj�j
2

�
3=2�7 1

c7Az=a
:

(147)

To include the general vacuum dependence, we should
multiply for the scalar-type perturbation

jc2�k� � c1�k�j; (148)

where

jc2�k�j2 � jc1�k�j2 � 1: (149)

For 7 � 0 we have an additional 2 ln�cAkj�j� factor.
For the tensor-type perturbation, we have �̂ � Ĉ
� and

we need an additional
���
2

p
factor [24], with cT replacing cA;

thus,

P 1=2
Ĉ
�

�k; �� �
�������������
16$G

p H
2$

1

aHj�j
!�7t�
!�3=2�

�
kj�j
2

�
3=2�7t

�
1=

����������
8$G

p

c7tT zt=a
: (150)

To include the general vacuum dependence, we should
multiply �����������������������������������������������

1

2

X
‘

jc‘2�k� � c‘1�k�j2
vuut ; (151)

where

jc‘2�k�j2 � jc‘1�k�j2 � 1: (152)

‘ � �;� indicate two polarization states. For 7 � 0 we
have an additional 2 ln�cAkj�j� factor.

In the case of string-axionic correction, which will affect
only the gravitational wave, we need to handle the case
separately. We have

P 1=2
Ĉ
�

�k; �� �
�������������
16$G

p H
2$

1

aHj�j
!�7t�
!�3=2�

�
kj�j
2

�
3=2�7t 1

c7tT

�

���������������������������������������������������������������������������
1

2

X
‘

1=8$G

jF� 2<‘ _7 k
a j

jc‘2�k� � c‘1�k�j2
vuut :

(153)

(2) In the superhorizon scale we identify [29]

P �̂ � P�; (154)
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where

P ��k; t� �
k3

2$2

Z
h��x� r; t���x; t�ixe�ik�rd3r

�
k3

2$2 j��k; t�j2 (155)

is a power spectrum based on the spatial averaging.
Compare the similarity between Eqs. (146) and (155).

(3) The growing modes of � are conserved while in the
large-scale limit. Thus, the final classical power spectra of
the large-scale structure and the gravitational wave P� is
the same as the P �̂ generated from the quantum fluctua-
tions in the early universe.

Spectral indices are defined as

nS � 1; nT �
@ lnP�

@ lnk
; (156)

thus,

P � / knS�1; knT : (157)

Assuming the simplest vacuum state, i.e., c2 � 1 and c1 �
0, etc., we have

nS � 1; nT � 3� 27 � 2� 2q: (158)

In the case of near Harrison-Zel’dovich spectra (nS � 1 ’
0 ’ nT), the quadrupole anisotropy of the CMB becomes

ha22i � ha22iS � ha22iT �
$
75

P’�� � 7:74
1

5

3

32
PC
� ;

(159)

which is valid for K � 0 � �; for a general situation with
nonvanishing � we need numerical treatment; see
Ref. [30]. The ratio between two types of perturbations is

r2 �
ha22iT
ha22iS

’ 3:46
PC
�

P’��

: (160)

From Eqs. (147) and (150) we have

r1 �
PC
�

P’��

� 2
��
kj�j
2

�
7�7t !�7t�

!�7�
c7�1
A

c7tT

�z
zt

�
2
: (161)

Therefore, if the background evolution during the quantum
generation stage satisfies Eq. (133), we can read the power
spectra (both scalar and tensor types) using Eqs. (141) and
(146). In the large-scale limit we have the power spectra in
Eqs. (147) and (150). The spectral indices (slopes) and the
ratio of amplitudes are presented in Eqs. (158) and (161).
The contribution to the quadrupole angular anisotropy can
be estimated using Eq. (159). We emphasize that all our
results in Secs. IV and V are generally valid in our gener-
alized gravity theories in unified forms.

The four-year Cosmic Background Explorer [31] data
with a n � 1 power-law fit give
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Qrms�PSjn�1
� 18� 1:6 "K; T � 2:725� 0:020 K;

ha22i �
4$
5

�Qrms�PSjn�1

T

�
2
’ 1:1� 10�10: (162)

The observed quadrupole amplitude is Qrms � 10�7
�4 "K,

which is lower than the above fitted value. The first-year
Wilkinson Microwave Anisotropy Probe (WMAP) [32]
data show an even lower value of Qrms � 8� 2 "K and
the temperature T � 2:725� 0:002 K. WMAP data also
provided a constraint on r2: r � 4PC
�=P’�� < 0:90 with
95% confidence and nS � 0:99� 0:04 [32].

C. Slow roll

In the context of f��;R� gravity, we have introduced the
following parameters [17]:

*1 �
_H

H2 ; *2 �
��

H _�
; *3 �

1

2

_F
HF

;

*4 �
1

2

_E
HE

:

(163)

*1 and *2 are the slow-roll parameters used in the mini-
mally coupled scalar field [33,34]. The two additional
functional degrees of freedom in F��� and !��� are
reflected in *3 and *4. In the context of string correction,
we have an additional functional degree of freedom in
'���. In order to consider its effect, we introduce the
following additional parameters:

*5 �
_F�Qa

H�2F�Qb�
; *6 �

_Qt

2HQt
; (164)

with

E �
F
_�2

�
! _�2 � 3

� _F�Qa�
2

2F�Qb
�Qc

�
: (165)

In the f��;R� gravity we have *5 � *6 � *3, and E in
Eq. (165) becomes the one in Eq. (60). In the case of
tachyonic corrections, we introduce

E � �
F
2X

�
Xf;X � 2X2f;XX �

3 _F2

2F

�
(166)

and take *5 � *6 � *3.
Using the above definitions and Eq. (122), assuming

K � 0, z and zt can be written in unified forms

z �
a _�=H
1� *5

����
E
F

s
; zt � a

������
Qt

p
: (167)

Thus, we can derive
063536
z00

z
� a2

�
H2�1� *1 � *2 � *3 � *4��2� *2 � *3 � *4�

�H�� _*1 � _*2 � _*3 � _*4�

� 2
�
3

2
� *1 � *2 � *3 � *4

�
H

_*5
1� *5

�
�*5

1� *5

� 2
_*25

�1� *5�2

�
; (168)

z00t
zt

� a2H2

�
�1� *6��2� *1 � *6� �

1

H
_*6

�
: (169)

Although we have introduced *i as an extension of slow-
roll parameters, it is far from certain that these parameters
can be properly called the slow-roll parameters. Thus, it is
better to regard *i as new definitions of the fundamental
parameters V���, !���, f��;R�, etc. If _*1 � 0, we have

� � �
1

aH
1

1� *1
: (170)

Thus, for _*i � 0, Eqs. (168) and (169) become

z00

z
�

1

�2

1

�1� *1�
2 �1� *1 � *2 � *3 � *4�

� �2� *2 � *3 � *4� �
ns
�2 ; (171)

z00t
zt

�
1

�2

�1� *6��2� *1 � *6�

�1� *1�
2 �

nt
�2 : (172)

The spectral indices become4

nS � 1 � 3� 27 � 3�
�����������������
4ns � 1

p
� 2

2*1 � *2 � *3 � *4
1� *1

; (173)

nT � 3� 27t � 3�
����������������
4nt � 1

p
� 2

*1 � *6
1� *1

: (174)

If *1;2;3;4 � 1 we have the Harrison-Zel’dovich spec-
trum for the scalar-type perturbation, and if *1;6 � 1 we
have the corresponding one for the tensor-type perturba-
tion. In this case Eqs. (147) and (150) become

P 1=2
�̂

�k; �� �
��������H2$ f1� *1 � �2*1 � *2 � *3 � *4�

� 	ln�kj�j� � 2� ln2� �E
g
1

c7Az=a

��������;
(175)
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P 1=2
Ĉ
�

�k; �� �
�������� ���

2
p H

2$
f1� *1 � �*1 � *6�	ln�kj�j�

� 2� ln2� �E
g
1

c7tT zt=a

��������; (176)

where �E � 0:57722 is Euler’s constant. Thus,

nS � 1 � 2�2*1 � *2 � *3 � *4�; nT � 2�*1 � *6�;

(177)

r1 �
PC
�

P’��

� 2
�
c7�1
A

c7tT

�z
zt

�
2
: (178)

The spectral indices are generally valid in all gravity
theories we are considering in this work. In the generalized
f��;R� gravity, we have r1 � 4j*1 � *3j � 2jnT j. Thus,
r1 � 4j*1j � 2jnT j in the minimally coupled scalar field.
The relation r1 � 2jnT j in the minimally coupled scalar
field is known as a ‘‘consistency relation.’’ We notice that
this relation is more generally valid in generalized f��;R�
gravity. However, in the tachyonic correction we have r1 �
4j*1 � *3jcA � 2jnT jcA [19]; in a simpler case this result
was presented in Ref. [35]. In the case of string correction
terms, we can derive

r1 � 4

��������
�
*1 � *3 �

1

4F

�
1

H2 �2Qc �Qd� �
1

H
Qe �Qf

�	

�
1

1� Qb
2F

�
cA
cT

�
3
��������: (179)

In the string-axionic correction term, we have

r1 � 4j*1 � *3j
1

2

X
‘

1

j1� 2<‘
k
a

_7
F j
: (180)

Therefore, in the slow-roll limit *i � 1 we have the tensor-
type perturbation suppressed compared with the scalar-
type perturbation. In the string corrections and the ta-
chyonic correction we have nontrivial wave propagation
speed cA (see Table I; in the string correction case we have
nontrivial cT as well; see Table II) and the resulting scalar
to tensor ratio r1 could depend on the specific realization of
the background evolution during the quantum generation
stage. The result can be read from Eq. (178) in the slow-roll
limit, or Eq. (161) in the more general situation satisfying
only Eq. (133).

VI. DISCUSSION

Considering our own publications on the subject, per-
haps it would be useful to make clear the new points made
in this work. Equations in terms of � and � for the
generalized gravity theories in Eqs. (58), (59), (85), (86),
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(101), and (102) and the corresponding second-order equa-
tions in terms of � in Eqs. (62), (90), and (105) are new.
We have extended results in Secs. III C and III E to the
situation with general background curvature. Also,
Sec. III G is more general by considering general coupling
of the field with gravity. We stress that the analyses in
Secs. IV and V are made in unified forms applicable to all
the generalized gravity theories we have considered.

Notice that our f��;R� gravity includes R2 gravity as a
simple case. Although the R2 term in the action leads to a
higher-order gravity theory, we have shown that we can
derive second-order perturbation equations for the scalar-
and tensor-type perturbations in the context of f�R� grav-
ity. We have investigated the roles of the RabRab correction
term separately in Ref. [36]; in four-dimensional space-
time, due to the Gauss-Bonnet theorem, R2 and RabRab
terms are complete fourth-order contributions by the pure
curvature corrections to quadratic order. Contrary to R2

gravity, the RabRab term leads to fourth-order differential
equations for both scalar- and tensor-type perturbations;
see [36].

No rotational mode (vector-type perturbation) is directly
excited by the presence of generalized forms of the scalar
field and the scalar curvature; this is true even in the case of
RabRab gravity [36]. This is because the evolution of rota-
tional perturbation is simply described by the momentum-
conservation equation of the additional fluid part energy-
momentum tensor, Tb

�m�
;b � 0.
In this work, we have considered only a single-

component situation. In the multicomponent situation,
our basic set of equations in Eqs. (12)–(19) remains valid,
with the fluid quantities interpreted as the sum over the
individual fluid quantities including fields. In order to
describe the dynamics of the individual fluid or field com-
ponent, we additionally need the conservation equations of
the individual energy-momentum tensor or the equation of
motion. Such equations in Einstein’s gravity limit and
in the generalized f��;R� gravity are presented in
Refs. [3,15,37], respectively. Extensions to more general
situations with L�c� can be made similarly by considering

the multiple fluids and fields in T�m�
ab in Eqs. (46) and (75).

We emphasize that most of our equations and analyses
made in this work are independent of the specific scenarios
of the universe and, thus, can be applied to the spatially
homogenous and isotropic Friedmann world models based
on our gravity theories. In a classic paper on the CMB
anisotropies Sachs and Wolfe [38] mentioned that ‘‘the
linear perturbations are so surprisingly simple that a per-
turbation analysis accurate to second order may be feasible
. . ..’’ Considering our unified formulation of perturbations
in such a wide variety of gravity theories, the linear per-
turbations can perhaps be described as ‘‘surprisingly sim-
ple’’ indeed. Related to the second part of the statement, an
accurate result in second-order perturbation can be found
in our recent work in Ref. [39].
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