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We consider a general relativistic zero-pressure irrotational cosmological medium perturbed to the third
order. We assume a flat Friedmann background but include the cosmological constant. We ignore the
rotational perturbation which decays in expanding phase. In our previous studies we discovered that, to the
second-order perturbation, except for the gravitational wave contributions, the relativistic equations
coincide exactly with the previously known Newtonian ones. Since the Newtonian second-order equations
are fully nonlinear, any nonvanishing third- and higher-order terms in the relativistic analyses are
supposed to be pure relativistic corrections. In this work, we derive such correction terms appearing in
the third order. Continuing our success in the second-order perturbations, we take the comoving gauge.
We discover that the third-order correction terms are of ’v order higher than the second-order terms where
’v is a gauge-invariant combination related to the three-space curvature perturbation in the comoving
gauge; compared with the Newtonian potential, we have ��� 3

5’v to the linear order. Therefore, the pure
general relativistic effects are of ’v order higher than the Newtonian ones. The corrections terms are
independent of the horizon scale and depend only on the linear-order gravitational potential (curvature)
perturbation strength. From the temperature anisotropy of cosmic microwave background, we have �T

T �
1
3��� 1

5’v � 10�5. Therefore, our present result reinforces our previous important practical implication
that near the current era one can use the large-scale Newtonian numerical simulation more reliably even as
the simulation scale approaches near (and goes beyond) the horizon.
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I. INTRODUCTION

In our previous works [1,2], we have proved that in the
zero-pressure irrotational cosmological medium the rela-
tivistic second-order scalar-type perturbation equations
coincide exactly with the known ones in Newtonian theory.
This result shows a continuation of the relativistic-
Newtonian correspondences of the cosmological zero-
pressure medium previously shown in the background
world model by Friedmann in 1922 [3] and by Milne in
1934 [4], and in the linear perturbation by Lifshitz in 1946
[5] and by Bonnor in 1957 [6]. History shows that both for
the background and for the linear perturbation the equa-
tions were first derived in Einstein’s gravity [3,5] and later
followed by studies in Newton’s gravity [4,6]. In the case
of second-order perturbations, the Newtonian result was
known first [7]. Since the Newtonian results are not sup-
posed to be reliable as the scale approaches the horizon,
our result has a practical importance by showing that even
to the second-order perturbations we can use Newtonian
equations in all scales. In this work, we will extend the
situation to the next order in relativistic perturbation
which, as we will explain shortly, can be regarded as
pure relativistic corrections. Even in the linear perturba-
tions, the presence of the tensor-type perturbation (gravi-
tational waves) can be regarded as a pure relativistic effect.
To the second order, additionally, the gravitational waves
and the scalar-type perturbation are coupled; thus, one can
source the other. This can be regarded as another pure
relativistic correction.
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In this work, we will derive pure relativistic corrections
of the scalar-type perturbation which appear in the third-
order perturbations. The situation we have is that to the
second order Einstein’s theory gives exactly the same
result as Newton’s theory, whereas in the Newtonian case
such second-order equations are, in fact, exactly valid to
fully nonlinear order. Therefore, any nonvanishing third-
and higher-order perturbations in Einstein’s gravity are
supposed to be the pure relativistic corrections. We will
present the scalar-type perturbation equations to the third
order and the gravitational wave equation to the second
order. This is enough because the previously known gravi-
tational wave equation will already get the correction terms
even in the second order, whereas for the scalar-type
perturbation new correction terms appear only in the third
order compared with previous studies [2]. If we include the
gravitational waves, the gravitational waves only to the
second order will be needed to make the third-order scalar-
type perturbation equations complete.

We will ignore the vector-type perturbation in this work,
thus considering only irrotational perturbation, because
due to the angular momentum conservation the rotational
perturbation always decays in expanding phase; this situ-
ation will be reversed in the collapsing phase, where the
rotational mode will grow again due to the angular mo-
mentum conservation. We will consider a flat background
with two reasons. First, even in the linear perturbations it is
known that the relativistic-Newtonian correspondence is
rather ambiguous in the presence of the background cur-
-1  2005 The American Physical Society
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vature; this is the case if we include the gravitational
potential in making the correspondence [8]. Second, cur-
rent observations of the large-scale structure and the cos-
mic microwave background radiation favor a near flat
Friedmann world model with nonvanishing cosmological
constant [9]. In fact, we will include the cosmological
constant in our analyses; thus, our results are relevant to
currently favored cosmology.

Our previous study on the second-order perturbations
revealed which gauge condition (equivalently, gauge-
invariant combinations) suits our problem [2]. In fact,
unique gauge conditions were distinguished in showing
the correspondence: These were the spatial C gauge and
the temporal comoving gauge. The spatial C gauge was a
rather natural choice because only in this gauge can the
spatial gauge mode be fixed completely to all orders. In
this gauge all the rest of the variables can be equivalently
regarded as spatially gauge-invariant ones to all orders; see
[1]. In the temporal gauge choice, however, we have many
(in fact, infinitely many) different gauge choices, which fix
the temporal gauge mode completely. In any such gauge
conditions all the rest of the variables can be equivalently
regarded as temporally gauge-invariant ones. Such proce-
dures for taking the temporal gauge condition are sepa-
rately available to each order in perturbations; i.e., we can
choose different gauge conditions to different perturba-
tional order; see [1].

The (temporal) comoving gauge distinguished itself
with the following reasons. In Ref. [2] we have success-
fully shown that in the comoving gauge we can identify the
density and velocity variables which allow us to derive
relativistic equations identical to the Newtonian ones. This
point, perhaps, does not necessarily imply that it is not
possible to discover any other variables and gauges which
also lead to the same identification. But we do mean that
the comoving gauge is a natural choice. This also does not
necessarily imply that even to the third order the comoving
gauge choice will be the best choice. As a matter of fact,
our policy/strategy about the gauge choice is that we do not
know which gauge will suit the problem before we inves-
tigate and try many different gauge conditions. That is why
we have presented our basic set of equations in a gauge-
ready form which allows maximal usage of many different
gauge conditions: See [10,11] for the linear case and [1] for
the second-order perturbations.

In this work, based on our successful experiences in the
linear and second-order perturbations, we will take the
temporal comoving gauge condition and the spatial C
gauge even to the third order. First, under this gauge
condition we can write the fully nonlinear equations in
simple forms. Second, only in this gauge do we have the
relativistic equations the same as the Newtonian ones to the
second order. And third, quite interestingly, we will show
that, in order to derive the third-order perturbations in this
gauge, in fact, we need to evaluate the geometric and
044012
energy-momentum variables to the second order only.
This is possible due to our appropriate choice of the
variables and the gauge conditions. Thus, in the following
we will derive the third-order pure relativistic correction
terms in the comoving gauge condition. As we mentioned,
since our gauge conditions fix the gauge modes com-
pletely, each of the variables we are using has a unique
corresponding gauge-invariant combination. Thus, our
analyses can be equivalently regarded as gauge-invariant
ones extended to the third-order perturbations.

Here we summarize the relativistic-Newtonian corre-
spondences known up to second-order perturbations in a
flat Friedmann world model without pressure. To the back-
ground order we have [3,4]

H2 �
8�G
3


�
const:

a2
�




3
; (1)

with the energy (mass) density 
 (%) / a�3; a�t� is the
cosmic scale factor and H � _a=a; we set c � 1. The
‘‘const.’’ part is interpreted as the spatial curvature in
Einstein’s gravity [3] and the total energy in Newton’s
gravity [4]. We put the cosmological constant 
 by hand
which can work as a repulsive force proportional to the
distance for 
> 0. To the linear-order perturbations we
have [5,6]

��� 2H _�� 4�G%� � 0; (2)

where � � �
=
 � �%=%, with 
 (%) and �
 (�%) the
background and perturbed parts of the energy (mass) den-
sity, respectively. This equation is valid considering the
general presence of the background spatial curvature term
and the cosmological constant. Now to the second order,
assuming flat background, we have [1,2,7]

_��
1

a
r 
 u � �

1

a
r 
 ��u�; (3)

r 
 � _u�Hu� � 4�G%a� � �
1

a
r 
 �u 
 ru�; (4)

or by combining these, we have

��� 2H _�� 4�G%� � �
1

a2
@
@t

�ar 
 ��u��

�
1

a2
r 
 �u 
 ru�: (5)

These equations are valid in the presence of the cosmo-
logical constant. The above equations are valid in both
Einstein’s and Newton’s theories. In the relativistic theory
we have to specify the variables � and u which correspond
to the relative density fluctuation and perturbed velocity in
Newton’s theory; this will be done later.

We believe no one would have anticipated such an exact
coincidence to the second-order perturbations, especially
considering the presence of the horizon in the relativistic
treatment. It might happen as well that our relativistic
-2
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results give relativistic correction terms appearing to the
second order which could become important as the scale
approaches and goes beyond the horizon. Our results show
that there are no such correction terms appearing to the
second order, and the correspondence is exact to that order.
Equations (3)–(5) are valid in a fully nonlinear situation in
Newton’s theory [7], whereas these are valid only up to the
second order in Einstein’s case [1,2]. It is our task to derive
the third-order correction terms in Einstein’s theory and to
show how it causes a difference between the two theories.
II. FULLY NONLINEAR EQUATIONS

In Ref. [2] we have presented the fully nonlinear equa-
tions in the comoving gauge condition using the 1� 3
covariant formulation [12] and the 3� 1 ADM
(Arnowitt-Deser-Misner) [13] formulations of Einstein’s
gravity. In Ref. [2] we showed that these two formulations
are equivalent, and in the following we will take the ADM
formulation. The basic set of ADM equations in our nota-
tion can be found in Sec. II A of Ref. [1]; see also [14]. As
this work can be regarded as a continuation of our previous
studies in Refs. [1,2], we follow the notations used in those
works.

In the ADM approach, the temporal comoving gauge
condition to all orders sets the flux four-vector to vanish,
i.e., J� � 0; here we also used the irrotational condition
which ignores the vector-type perturbation. In Ref. [1] the
fluid quantities are introduced based on the normal-frame
four-vector ~na, with ~n� � 0; in this case the information of
the fluid motion is present in the flux vector ~qa, with
~qa~n

a � 0. In such a choice of the frame, the temporal
comoving gauge condition with vanishing rotation implies
~u� � 0 of the fluid four-vector ~ua. Thus, the fluid four-
vector coincides with the normal four-vector. The physical
zero-pressure condition implies vanishing isotropic pres-
sure (~p or S in the ADM notation) and anisotropic stress
( ~�ab or �S��), i.e., ~p � 0 � ~�ab or S � 0 � �S�� to all
orders, based on the fluid four-vector. As the ~ua coincides
with the ~na in our comoving gauge, the zero-pressure
conditions simply allow us to set all the pressure terms in
the normal-frame fluid quantities equal to zero; we point
out that this is not true in the other gauge conditions in the
normal-frame fluid quantities; see [2]; in the normal frame,
in other than the comoving gauge conditions, the pressure
and anisotropic stress do not vanish to the second and
higher orders even in the physically zero-pressure situ-
ation; for further discussions, see [2]. Although we do
not need the form of energy-momentum tensor, from
Eqs. (3) and (4) of Ref. [1] we have

~T 00 � N�2E; ~T0
� � 0; ~T�� � 0; (6)

where tildes indicate the covariant quantities; E is the
ADM energy density, and N is the lapse function defined
as N2 � ��~g00��1.
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The momentum conservation equation in Eq. (13) of
Ref. [1] gives

N;� � 0: (7)

Thus, we may set N � a�t� to all orders. In this case we
have _E � E;0N

�1. The energy conservation equation and
the trace part of the ADM propagation equation in
Eqs. (12) and (10) of [1] give, respectively,

_̂E� KE � 0; (8)

_̂K � 1
3K

2 � �K�� �K�� � 4�GE�
 � 0; (9)

where _̂E � _E� E;�N
�N�1, etc.; K and �K�� are the trace

and trace-free parts, respectively, of the extrinsic curvature
K�� of the normal hypersurface introduced in the ADM
formulation, and N� is a shift vector defined as N� � ~g0�.
The spatial indices in the ADM formulation are based on
the ADM three-space metric h�� defined as h�� � ~g��.
By combining these equations, we have

� _̂E
E

�

̂
�

1

3

� _̂E
E

�
2
� �K�� �K�� � 4�GE�
 � 0: (10)

Equations (6)–(10) are valid to all orders; i.e., these equa-
tions are fully nonlinear.
III. THIRD-ORDER PERTURBATIONS

We consider the scalar- and tensor-type perturbations in
the flat Friedmann background. As the metric we take

ds2 � �a2�1� 2��d#2 � 2a2�;�d#dx�

� a2�g�3����1� 2’� � 2%;�j� � 2C�t�
���dx

�dx�; (11)

where �, �, %, and ’ are spacetime dependent perturbed-
order variables; we take Bardeen’s metric convention in
Refs. [10,11] extended to the third order. A vertical bar
indicates a covariant derivative based on g�3���, which can be
regarded as ��� if we use Cartesian coordinates in the flat
Friedmann background. By taking % � 0, which we call
the spatial C gauge, the spatial gauge mode is removed
completely; thus, all the remaining variables we are using
are spatially gauge-invariant to the third order; this is true if
we simultaneously take a temporal gauge which removes
the temporal gauge mode completely; see Secs. VI B 2 and
C 1 of Ref. [1]. In the following, we will take % � 0 as the
spatial gauge condition and use & � a�� a2 _%, which
becomes & � a�.

We expand

E � 
� �
; K � �3H � ': (12)

Up to this point, our notations look exactly the same as in
the linear theory, whereas, in fact, we consider each per-
turbation variable to be expanded to the third order. As an
example, for �
 we have
-3
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�
 � �
�1� � �
�2� � �
�3� � . . . ; (13)

where, to the third order we truncate the expansion at third-
order term �
�3�. A close examination of our fully non-
linear equations in Sec. II reveals an important technical
method of performing the third-order perturbations by
using only the second-order expansion of perturbation
variables. Such a simple method is possible due to our
right choice of the equations, the right gauge conditions,
and our proper choice of the fundamental variables to be
matched with the Newtonian variables to the third order.
That is, in our calculations we do not even need to have the
inverse metric expanded to the third order, and all algebraic
quantities we need can be found in Ref. [1], which presents
various useful quantities expanded to the second order in
perturbations.

To the linear order we identified [8]

�% � �
v; �� � �’& � �&;

u � �rv&; �
1

a
r 
 u �

�

a
v& � 'v: (14)

To the second order we identified [2]

�
v � �%; 'v � �
1

a
r 
 u: (15)

Based on our experience in the second-order perturbations,
we have in mind to identify Eq. (15) even to the third order.
It may turn out to be that these are not the best identifica-
tions, but in the following we will assume these are the
right ones and will take the consequent additional third-
order terms as the pure relativistic corrections.

The perturbed-order variable v is defined as J� �
�a
v;� to all orders; thus, v is related to the velocity or
flux variable. Our comoving gauge condition sets v � 0. In
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our notation, �
v indicates a gauge-invariant combination
which is the same as �
 in the comoving gauge which sets
v � 0. Such a variable (equivalently, a gauge-invariant
combination) is unique to all orders in perturbations; to
the linear order we have �
v � �
� _
av and, to the
second order, see Eq. (282) in Ref. [1]. Similarly, ’& is a
gauge-invariant combination equivalent to ’ in the zero-
shear gauge which sets & � 0; to the linear order we have
’& � ’�H& and, to the second order, see Eq. (280) in
Ref. [1]. For our justification to name the gauge conditions,
see below Eq. (265) of Ref. [1].

One of the terms we need to evaluate to the third order in
Eqs. (8)–(10) is �K�� �K��. Since �K�� is already at least
linear order, we need to evaluate �K�� to the second order
only, etc. The other ones we need to evaluate to the third
order are

_̂E � _E� E;�N�N�1; _̂K � _K � K;�N�N�1: (16)

Because of our identifications in Eq. (15), we are using the
perturbed parts of E and K in Eq. (12) as the fundamental
perturbation variables. In order to evaluate E;�N�, since
E;� (or N�) is already at least linear order, it is enough to
evaluate N� (or E;�) only to the second order, and similarly
for K;�N

�. Thus, using Eqs. (55), (57), and (175) of
Ref. [1], we have

E;�N
� � �

1

a
�
;�&

;��1� 2’� � 2
1

a
�
;�&;�C�t�

��;

(17)

K;�N
� � �

1

a
';�&

;��1� 2’� � 2
1

a
';�&;�C�t�

��; (18)
�K �� �K�� �

�
1

a2

�
&;�j� �

1

3
g�3����&

�
� _C�t���

���
1

a2
&;�j� � _C�t�

��

�
�1� 2�� 4’� �

4

a2
&;�’;� � 4 _’C�t�

��

�
2

a2
&;%�2C�t�

%�j� � C�t�
��j%� � 4C�t�%

�

�
1

a2
&;�j% � _C�t�

�%

��
: (19)

Thus, Eqs. (8) and (9) give
�
_



� 3H

�
�1� �� � _�� ' � '��

1

a2
�;�&;��1� 2’� � 2

1

a2
�;�&;�C�t�

��; (20)

�3 _H � 3H2 � 4�G
�
� _'� 2H'� 4�G�
 �
1

3
'2 �

1

a2
';�&;��1� 2’� � 2

1

a2
';�&;�C�t�

��

�

�
1

a2

�
&;�j� �

1

3
g�3����&

�
� _C�t���

�

�

��
1

a2
&;�j� � _C�t�

��

�
�1� 2�� 4’� �

4

a2
&;�’;� � 4 _’C�t�

��

�
2

a2
&;%�2C�t�

%�j� � C�t�
��j%� � 4C�t�%

�

�
1

a2
&;�j% � _C�t�

�%

��
: (21)
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We note that � and _’ in the comoving gauge are already
quadratic order at least and, thus, can be ignored in
Eq. (21); see Eqs. (12) and (20) of Ref. [2].

Now we need Newtonian expressions of ’ to the linear
order and & to the second order. Since we are considering
the comoving gauge condition, our ’ and & are the same as
the gauge-invariant combinations ’v and &v, respectively.
To the linear order we have
044012
’v � ’� aHv � ’& � aHv&;

&v � &� av � �av&:
(22)
To the second order, &v is presented in Eq. (284) of
Ref. [1]. To the second order, from Eq. (197) of Ref. [1]
we have
'�
�

a2
& � N�s�

2 jv

�
1

a2
�2’�&� &;�’;�� �

3

2

1

a2
��1r��&;��’� &;�’;�j�� �

2

a2
&;�%C�t�

�% �
1

2
C�t��% _C�t�

�%

�
3

2
��1r�

�
�’;� _C�t�

�� �
1

a2
&;��C�t�

�� � 2C�t��% _C�t�
��j% � C�t��% _C�t�

�%j�

�
�

1

a
X; (23)
where we have ignored � and _’ which contribute to the
third order. Apparently, we also need _C�t�

�� to the second
order. This will be presented in Sec. V.

IV. SCALAR-TYPE CORRECTIONS

Ignoring C�t�
��, the perturbed parts of Eqs. (20), (21), and

(23) give the complete set. As we ignore the rotational-type
perturbation the Newtonian velocity perturbation u is of a
potential type, i.e., u � ru. Thus, Eqs. (15) and (23) give
' � �
1

a
r 
 u � �

1

a
�u; & � au� a��1X; (24)

where ' is valid to the third order and & is valid to the
second order. Thus, Eqs. (20), (21), and (23) can be written
as

_��
1

a
r 
 u � �

1

a
r 
 ��u� �

1

a
�2’u�r���1X�� 
 r�;

(25)
1

a
r 
 � _u�Hu� � 4�G
� � �

1

a2
r 
 �u 
 ru� �

2

3a2
’u 
 r�r 
 u� �

4

a2
r 


�
’
�
u 
 ru�

1

3
ur 
 u

��

�
�

a2
�u 
 r���1X�� �

1

a2
u 
 rX�

2

3a2
Xr 
 u; (26)

where

X � 2’r 
 u� u 
 r’� 3
2�

�1r 
 �u 
 r�r’� � u�’�: (27)

Equations (25) and (26) extend Eqs. (3) and (4) to the third order. By combining Eqs. (25) and (26), we can derive

��� 2
_a
a

_�� 4�G
� � �
1

a2
@
@t

�ar 
 ��u�� �
1

a2
r 
 �u 
 ru� �

1

a2
@
@t

fa�2’u�r���1X�� 
 r�g �
2

3a2
’u 
 r�r 
 u�

�
4

a2
r 


�
’
�
u 
 ru�

1

3
ur 
 u

��
�

�

a2
�u 
 r���1X�� �

1

a2
u 
 rX�

2

3a2
Xr 
 u; (28)
which extends Eq. (5) to the third order. Examination of
Eqs. (25)–(27) shows that all the third-order correction
terms are of ’ order higher than the second-order terms
such as �1=a�r 
 ��u� and �1=a2�r 
 �u 
 ru�. As the fully
nonlinear zero-pressure Newtonian equations are exact to
the second order, the above third-order correction terms in
our relativistic analyses are pure relativistic correction
terms. Therefore, the pure general relativistic effects are
at least ’ order higher than the Newtonian ones. Up to the
third-order corrections appearing in the general relativity,
the effects are independent of the horizon scale and depend
on the linear-order curvature (gravitational potential, see
below) perturbation strength only.

In Eqs. (25)–(27) we need ’ only to the linear order.
Thus, let us examine the behavior of ’ to the linear order.
In our comoving gauge condition, ’ is equivalent to a
gauge-invariant combination ’v, and to the linear order
from Eq. (22) we have

’v � ’& � aHv&; (29)

where we have ’& � ��� and u � �rv& in Eq. (14).
Thus, in terms of the Newtonian variables we have
-5
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’ � ���� _a��1r 
 u: (30)

Exact solutions of linear perturbation were presented in
tables in Ref. [15]. For K � 0 we have [15]

’v � C;

’& � ��& � �4�G
a2��1�v � C4�G
a2H
Z t dt

_a2
;

v& � a��1'v � �C
1

aH

�
1� a2H _H

Z t dt

_a2

�
; (31)

where the lower bounds of integrations give decaying
modes. For K � 0 � 
, using a � a1t2=3, we have [15]

’v � C;

’& � ��& � �
2

3
a21�

�1�v �
3

5
C�

4

9
dt�5=3;

v& � a1t
2=3��1'v � �

1

a1

�
3

5
Ct1=3 �

2

3
dt�4=3

�
:

(32)

Notice that to the linear order we have

’v � C; (33)

and ’v has no decaying mode in expanding phase; this is
true considering the presence of the cosmological constant.
In fact, to the linear order ’v satisfies [8]

_’v � 0: (34)

See also Eq. (20) in the second reference of Ref. [2].
Ignoring the decaying mode, for 
 � 0, we have

’& � 3
5’v; (35)

and the temperature anisotropy of cosmic microwave back-
ground radiation (CMB) gives [16,17]

�T
T

�
1

3
’& �

1

5
’v �

1

5
C; (36)

to the linear order. This is a part of the Sachs-Wolfe effect
in a flat background without the cosmological constant.
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The observations of CMB give �T=T � 10�5 [18]; thus,

’v � 5� 10�5 (37)

in the large-scale limit near horizon scale. Our ’ is
dimensionless.

We call ’ the curvature perturbation because it is related
to the perturbed part of the spatial curvature of the normal
hypersurface. To the linear order we have

R�h� �
6 �K

a2
� 4

�� 3 �K

a2
’; (38)

where R�h� is the scalar curvature of the three-space metric
h��, and �K is the sign of the background curvature; see
Eq. (4) in Ref. [11]. To the second order, see Eq. (265) in
Ref. [1]. In fact, from Eqs. (7), (55), and (175) of Ref. [1],
we can easily check that ’ characterizes the three-space
Riemann curvature R�h��

�%� to all orders in perturbations;
this is true assuming pure scalar-type perturbation. The
gauge-invariant combination ’v is also known to be one of
the large-scale (super-sound-horizon) limit conserved var-
iables in various situations, including time varying equa-
tion of state, field potential, and generalized gravity
theories [19]. It is also known to be conserved in the
large-scale (super-sound-horizon) limit even in nonlinear
situations [1,20].
V. INCLUDING THE GRAVITATIONAL WAVES

In this section, we present the complete set of equations
to the third order, now including the contribution of gravi-
tational waves, and also the gravitational wave equation
complete to the second order. Using Eqs. (14), (15), and
(24), Eqs. (20), (21), and (23) give
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��; (39)
1

a
r 
 � _u�Hu� � 4�G
� � �

1

a2
r 
 �u 
 ru� � _C�t���

�
2

a
u�j� � _C�t�

��

�
�

2

3a2
’u 
 r�r 
 u�

�
4

a2
r 


�
’
�
u 
 ru�

1

3
ur 
 u

��
�

�

a2
�u 
 r���1X�� �

1

a2
u 
 rX�

2

3a2
Xr 
 u

�
2

a2
�r 
 u�;�u�C�t�

�� �
4

a
_C�t���

�
u�’;� � 2’u�j� �

1

2
���1X�;�j� � a’ _C�t�

��

�

� 4
�
1

a
u�j� � _C�t���

��
C�t�%

�

�
1

a
u�j% � _C�t�

�%

�
�

1

3a
C�t�
��r 
 u�

1
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(40)
where
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X � 2’r 
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These generalize Eqs. (25)–(27) in the presence of the gravitational waves. By combining Eqs. (39) and (40), we have
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which generalizes Eq. (28) to include the gravitational waves.
Now we present the equation for tensor-type perturbation to the second order. From Eqs. (103) and (210) of Ref. [1], we

can derive the equation for �C�t�
�� to the second order. Since we are ignoring the vector-type perturbation, from Eqs. (199)

and (211) of Ref. [1] we have

�C �t�
�� � 3H _C�t�

�� �
�

a2
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�� � N4�� �

3

2

�
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1
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�
��2r%r�N4%�: (43)

From Eq. (103) of Ref. [1] to the second order, we have
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(44)
In Eq. (44) we have ignored � and _’ terms which are
already quadratic order in the comoving gauge. We have
& � &v, ’ � ’v, ' � 'v, and C�t�

�� � C�t�
��v, which are

gauge-invariant combinations. Apparently, we need &v,
'v, and ’v to the linear order. To that order, we have
identified 'v � � 1

ar 
 u and u � 1
ar&v. For ’v we

have Eq. (29). Using these identifications, we can express
the scalar-type perturbation variables in Eq. (44) in terms
of the Newtonian variables.

VI. DISCUSSION

We have derived the third-order perturbation equations
in the zero-pressure cosmological medium in Einstein’s
044012
gravity. We have expressed the third-order terms using
the Newtonian variables identified in the lower-order per-
turbations. Since the Newtonian zero-pressure cosmologi-
cal medium is exact to the second order in perturbation, our
third-order terms in relativistic context are pure relativistic
corrections. Our results show that the third-order correc-
tion terms in relativistic energy and momentum conserva-
tion equations are of ’v order higher than the second-order
terms, thus, equivalently, ’v order higher than the
Newtonian terms. The corrections terms are independent
of the horizon scale and depend only on ’v to the linear
order, which is the spatial curvature perturbation in the
comoving gauge (hypersurface), or ���, which is the
-7



JAI-CHAN HWANG AND HYERIM NOH PHYSICAL REVIEW D 72, 044012 (2005)
gravitational potential perturbation strength. The variable
’v is known to have conserved behavior and its amplitude
in the large scale (near horizon, say) is constrained by the
low-level anisotropies of the CMB temperature; see
Eq. (37). Therefore, our result reinforces our previous
conclusion in Ref. [2] that one can use the large-scale
Newtonian numerical simulation more reliably even as
the simulation scale approaches near (and goes beyond)
the horizon.

In this work, we have assumed a single zero-pressure
irrotational fluid in the flat cosmological background.
Dropping any of these conditions could potentially lead
to relativistic corrections. Because of these assumptions,
we cannot apply our results when the radiation components
(including neutrino anisotropic stress) become important
in a high redshift epoch and in the case when the baryon
generated entropy leads to rotational perturbations in the
small-scale clusters. Extensions to include relativistic
second-order perturbational effects of the pressure, the
rotation, the nonflat background, and the multicomponent
situation will be investigated on future occasions. In this
work, we derived the relativistic correction terms appear-
ing in the third order and showed that these correction
terms do not involve the horizon scale and are small in
our observable patch.

Besides theoretical and practical significance, we be-
lieve our exact result to the second order and pure relativ-
istic corrections to the third order have historical value as
well, because these have been unsolved issues since
Lifshitz’s original work in the linear regime in 1946 [5].
Before our present third-order and the previous second-
order works, there were different anticipations among re-
searchers in the field that even in the second order the
relativistic result might be different from the Newtonian
ones: One common anticipation was that the general rela-
tivistic effects might become important as the scale ap-
proaches and goes beyond the horizon. Our results resolved
such an issue and showed that there exist no correction
terms to the second order in all scales. We also showed that
pure relativistic correction terms appearing in third order
do not depend on the horizon scale. It depends only on the
strength of the dimensionless gauge-invariant curvature
perturbation variable ’v or the dimensionless linear-order
gravitational potential ��.

The post-Newtonian approximation [21] provides a
complementary method to our perturbative approach in
deriving the relativistic correction terms in the
Newtonian cosmology. The post-Newtonian approxima-
tion takes v=c expansion with v=c � 1; thus, for near
virialized systems we have GM=�Rc2� � v2=c2 � 1.
Thus, although such an approximation takes account of
044012
nonlinearity, it is valid only far inside the horizon; as we
approach the horizon, GM=�Rc2� becomes unity.
Consistency of the Newtonian cosmology with the New-
tonian limit of the post-Newtonian approximation was
reported in Ref. [22]. We can show that the Newtonian
cosmological hydrodynamic equations naturally appear in
the zeroth-order post-Newtonian approximation [23].
Recently, we derived the fully nonlinear first-order post-
Newtonian correction terms and showed that these correc-
tion terms have typically GM=�Rc2� � v2=c2 � 10�5 or-
der smaller than the Newtonian terms in the nonlinearly
clustered regions [23]. Being a complementary approach to
the post-Newtonian approximation (which provides fully
nonlinear equations), our equations valid to the third-order
perturbations may have diverse applications in the cosmo-
logical situations where the systems have not reached fully
nonlinear stage. Compared with the post-Newtonian ap-
proach, our perturbation approach is applicable in all
cosmological scales.

Even in the small (far less than the horizon) scale, the
pure (third-order) relativistic correction terms could have
important roles if the strength of linear-order ’v is large
enough. Our relativistic results are valid in the perturbative
sense. Thus, if ’v approaches near unity, higher-order
perturbative terms could become important as well, and
it is likely that our perturbative approach breaks down.
Still, it would be interesting to investigate regimes where
’v is moderately important, so that we can study the roles
of pure relativistic effects using our third-order correction
terms. For example, whether such pure relativistic correc-
tion terms could lead to an observationally distinguishable
non-Gaussian signature [24] is an interesting issue which
may deserve further attention. For such investigations,
Eqs. (25)–(28) are the complete set for pure scalar-type
perturbation, and Eqs. (39)–(44) provide the complete set
including the gravitational waves. As we consider a flat
background, the ordinary Fourier analysis can be used to
study the mode couplings as in the Newtonian case in
Ref. [25]. Comparing the roles of pure relativistic third-
order corrections with the inherent third-order perturbation
effects in the Newtonian approximation in Eqs. (25)–(28)
will be an interesting step we can take. Applications to
such cosmological situations are left for future studies.
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