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Why Newtonian gravity is reliable in large-scale cosmological simulations
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ABSTRACT

Until now, it has been common to use Newtonian gravity to study the non-linear clustering
properties of large-scale structures. Without confirmation from Einstein’s theory, however, it
has been unclear whether we can rely on the analysis (e.g. near the horizon scale). In this
work we will provide confirmation of the use of Newtonian gravity in cosmology, based on
the relativistic analysis of weakly non-linear situations to third order in perturbations. We will
show that, except for the gravitational-wave contribution, the relativistic zero-pressure fluid
equations perturbed to second order in a flat Friedmann background coincide exactly with
the Newtonian results. We will also present the pure relativistic correction terms appearing
in the third order. The third-order correction terms show that these terms are the linear-order
curvature perturbation times the second-order relativistic/Newtonian terms. Thus, the pure
general relativistic corrections in the third order are independent of the horizon scale and
are small when considering the large-scale structure of the Universe because of the low-level
temperature anisotropy of the cosmic microwave background radiation. Since we include the
cosmological constant, our results are relevant to currently favoured cosmology. As we prove
that the Newtonian hydrodynamic equations are valid in all cosmological scales to second
order, and that the third-order correction terms are small, our result has the important practical
implication that one can now use the large-scale Newtonian numerical simulation more reliably
as the simulation scale approaches and even goes beyond the horizon. In a complementary
situation, where the system is weakly relativistic (i.e. far inside the horizon) but fully non-
linear, we can employ the post-Newtonian approximation. We also show that in large-scale
structures, the post-Newtonian effects are quite small.

Key words: gravitation – hydrodynamics – relativity – cosmology: theory – large-scale struc-
ture of Universe.

1 I N T RO D U C T I O N

In order to interpret results from Einstein’s theory of gravity prop-
erly, we often need corresponding results from Newton’s theory.
On the other hand, in order to use results from Newtonian gravity
theory reliably, we need confirmation from Einstein’s theory. The
observed large-scale structures show that non-linear processes are at
work; see the 2dF Galaxy Redshift Survey final data release (Colless
et al. 2003) and the SDSS data release 3 (Abazajian et al. 2004).
Currently, studies of such structures are mainly based on Newto-
nian physics in both analytical and numerical approaches (for re-
views, see Sahni & Coles 1995; Bertschinger 1998; Bernardeau et al.
2002; Cooray & Sheth 2002). One must admit the incompleteness
of this approach as the simulation scale becomes larger because,
first, Newtonian gravity is an action-at-a-distance, i.e. the gravita-
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tional influence propagates instantaneously thus violating causality.
Secondly, Newton’s theory is ignorant of the presence of the hori-
zon where the relativistic effects are supposed to dominate: near the
horizon we have GM/(λc2) ∼ λ2/λ2

H ∼ 1 where λH ∼ c/H is the
dynamic horizon scale with H as Hubble’s constant. Finally, Ein-
stein’s gravity apparently has a structure quite different from that of
Newtonian gravity. The causality of gravitational interactions and
the consequent presence of the horizon in cosmology are naturally
taken into account in the relativistic gravity theories, of which Ein-
stein’s gravity is the prime example. In this work we will present the
similarities and differences between the two gravitational theories
in weakly non-linear regimes in cosmological situations.

In the literature, however, independent of any such shortcom-
ings of Newtonian gravity in the cosmological situation, the
sizes of Newtonian simulations have already reached the Hub-
ble horizon scale (Colberg et al. 2000; Jenkins et al. 2001;
Evrard et al. 2002; Bode & Ostriker 2003; Dubinski et al. 2003;
Park et al. 2005). Common explanations often given by people
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working in the active field of large-scale numerical simulation are (i)
that in the small scale one may rely on Newton’s theory, and (ii) that
as the scale becomes larger, the large-scale distribution of galaxies
looks linear, in which case Einstein’s gravity gives the same result
as Newtonian gravity. In such a situation, in order to have proper
confirmation we still need to investigate the Einstein case in non-
linear or weakly non-linear situations. While the general relativistic
cosmological simulation is currently not available, in this work we
will shed light on the situation by a perturbative study of the non-
linear regimes using Einstein’s theory of gravity. We will show that
even to second order in perturbations, except for coupling to grav-
itational waves, Einstein’s gravity gives the same equations known
in Newton’s theory, and the pure relativistic corrections appearing
in the third-order perturbations are independent of the horizon and
are small. Thus, our relativistic analysis now provides assurance that
Newton’s gravity is reliable in practice even in the weakly non-linear
regimes in cosmology. Such a comforting conclusion comes from
a thorough relativistic analysis of the weakly non-linear situations
to third order in perturbations. Despite our simply expressed final
conclusion, the results still look surprising and important. We set
c ≡ 1.

2 F U L LY N O N - L I N E A R E QUAT I O N S

A N D P E RT U R BAT I O N S

We start from the completely non-linear and covariant (1+3) equa-
tions (Ehlers 1961; Ellis 1971, 1973). We need the energy conserva-
tion equation and the Raychaudhury equation. For a zero-pressure
medium in the energy frame, we have (Noh & Hwang 2004)

˜̃̇μ + μ̃θ̃ = 0, (1)

˜̃̇
θ + 1

3
θ̃2 + σ̃ abσ̃ab − ω̃abω̃ab + 4πGμ̃ − � = 0, (2)

where � is the cosmological constant; θ̃ ≡ ũa
;a is the expansion

scalar, and σ̃ab and ω̃ab are the shear and the rotation tensors, respec-
tively. Tildes indicate the covariant quantities based on the space–
time metric g̃ab. We have

˜̃̇μ ≡ μ̃,a ũa

and

˜̃̇
θ ≡ θ̃,a ũa

which are the covariant derivatives along ũa . From these we have( ˜̃̇μ

μ̃

)·̃
− 1

3

( ˜̃̇μ

μ̃

)2

− σ̃ abσ̃ab + ω̃abω̃ab − 4πGμ̃ + � = 0. (3)

Equations (1)–(3) are valid to all orders, i.e. these equations are
fully non-linear and still covariant. Equations (1)–(3) are not com-
plete: to second- and higher-order perturbations, we will need other
equations in Einstein’s theory.

We consider the scalar- and tensor-type perturbations in the Fried-
mann background without pressure; we ignore the vector-type per-
turbation (rotation) because it always decays in the expanding phase
even to second order (Noh & Hwang 2004). As the metric we take

ds2 = −(1 + 2α) dt2 − 2aβ,α dt dxα

+ a2
[
g(3)

αβ (1 + 2ϕ) + 2γ,α|β + 2C (t)
αβ

]
dxα dxβ, (4)

where a(t) is the scalefactor; α, β, γ and ϕ are space–time depen-
dent scalar-type perturbed-order variables; C (t)

αβ is the transverse and
trace-free tensor-type metric perturbation (gravitational waves). We

take the metric convention in Bardeen (1988) extended to third or-
der (Noh & Hwang 2004). The Greek and Latin indices indicate
the space and space–time indices, respectively; the spatial indices
of perturbed-order variables are raised and lowered by g(3)

αβ which
becomes δαβ if we take Cartesian coordinates in the flat Friedmann
background. A vertical bar indicates a covariant derivative based on
g(3)

αβ . We will take γ ≡ 0 as the spatial gauge condition which makes
all the remaining variables spatially gauge-invariant to all orders of
perturbations (Noh & Hwang 2004).

The fluid quantities are ordinarily defined based on the fluid four-
vector ũa in the energy frame. Our comoving gauge condition takes
vanishing flux q̃a ≡ 0 (the energy-frame condition), and ũα ≡ 0
for the fluid four-vector; here, we ignored the vector-type pertur-
bation. Thus, the fluid four-vector coincides with the normal-frame
four-vector ña which has ñα ≡ 0. The condition ũα = 0 implies
vanishing rotation tensor ω̃ab = 0. We lose no generality by impos-
ing the gauge condition. Since the comoving gauge condition fixes
the temporal gauge mode completely, the remaining variables under
this gauge condition are equivalently gauge-invariant; this is true to
all orders of perturbations (Noh & Hwang 2004). In our gauge con-
dition the energy–momentum tensor of a zero-pressure irrotational
fluid becomes

T̃ 0
0 = −μ̃, T̃ 0

α = 0 = T̃ α
β , (5)

where μ̃ is the energy density.

3 BAC K G RO U N D A N D L I N E A R

P E RT U R BAT I O N S

To the background order, we have μ̃ = μ and θ̃ = 3(ȧ/a) where
an overdot indicates a time derivative based on t. Equations (1) and
(2) give

μ̇ + 3
ȧ
a

μ = 0, (6)

3
ä
a

+ 4πGμ − � = 0. (7)

Combining these equations we have the Friedmann equation

ȧ2

a2
= 8πG

3
μ − constant

a2
+ �

3
, (8)

with μ ∝ a−3. This equation was first derived based on Einstein’s
gravity by Friedmann (1922, 1924) and Robertson (1929), and New-
tonian study followed later by Milne (1934) and McCrea & Milne
(1934). In the Newtonian context, the relativistic energy density μ

can be identified with the mass density . The ‘constant’ is inter-
preted as the spatial curvature (K) in Einstein’s gravity (Friedmann
1922, 1924) and the total energy in Newton’s gravity (McCrea &
Milne 1934).

To linear-order perturbations in the metric and energy–
momentum variables, we introduce

μ̃ ≡ μ + δμ, θ̃ ≡ 3
ȧ
a

+ δθ, (9)

where μ and δμ are the background and perturbed energy density,
respectively, and δθ is the perturbed part of the expansion scalar.
We emphasize that our spatial γ = 0 gauge and temporal comov-
ing gauge conditions defined above equation (5) fix the spatial and
temporal gauge degrees of freedom completely. Thus, all variables
in these gauge conditions are equivalently gauge-invariant to linear
order, i.e. each of the variables has a unique corresponding gauge-
invariant combination (Bardeen 1988; Hwang 1991). It is important
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to point out that the above two statements are valid even in second-
and all higher-order perturbations – see section VI in Noh & Hwang
(2004). To background order we already identified μ ≡ . Now, to
linear order we identify

δμ ≡ δ, δθ ≡ 1

a
∇ · u. (10)

To linear order the perturbed parts of equations (1) and (2) give

δ̇ + 1

a
∇ · u = 0, (11)

1

a
∇ ·

(
u̇ + ȧ

a
u

)
+ 4πGμδ = 0. (12)

Combining these equations we have

δ̈ + 2
ȧ
a

δ̇ − 4πGμδ = 0, (13)

which is the well-known density perturbation equation in both rel-
ativistic and Newtonian contexts; we set δ ≡ δμ/μ. This equa-
tion was first derived based on Einstein’s gravity by Lifshitz (1946),
and Newtonian study followed later by Bonnor (1957). Notice that
the relativistic result is identical to the Newtonian result. The grav-
itational wave perturbation present in the relativistic theory simply
decouples from the density perturbation and follows the wave equa-
tion (Lifshitz 1946)

C̈ (t)
αβ + 3

ȧ
a

Ċ (t)
αβ − � − 2K

a2
C (t)

αβ = 0, (14)

where K is the sign of the background spatial curvature.
It is curious to note that in both the expanding world model and

its linear structures, the first studies were made in the context of
Einstein’s gravity (Friedmann 1922; Lifshitz 1946), and the much
simpler and, in hindsight, more intuitive Newtonian studies fol-
lowed later (Milne 1934; Bonnor 1957). Perhaps these historical
developments reflect the fact that people did not have confidence in
using Newton’s gravity in cosmology before the result was already
known, and the method ushered in, using Einstein’s gravity. This is
also reflected in the historical development of modern cosmology
which began only after the advent of Einstein’s gravitational the-
ory (Einstein 1917). Furthermore, it is known in the literature that
the results in Newtonian cosmology are, in fact, guided by previ-
ously known relativistic results – i.e. without the guidance of the
relativistic analyses, Newtonian theory could have led to other re-
sults (Layzer 1954; Lemons 1988). It may also be true that only
after having a Newtonian counterpart could we understand what the
often arcane relativistic analysis shows. For the second-order per-
turbations, however, the history is different from the two previous
cases. Currently only the Newtonian result is known in the litera-
ture. Thus, the result only known from using Newton’s gravitational
theory still awaits confirmation from Einstein’s theory. Here, we are
going to fill the gap by presenting the much-needed relativistic con-
firmation to second order, and the pure relativistic corrections start
appearing from third order.

Although equation (13) is also valid with general spatial curva-
ture, in the following we consider the flat background only. As we
include the cosmological constant �, however, our zero-pressure
background and perturbations describe remarkably well the cur-
rent expanding stage of our Universe and its large-scale structures
(Spergel et al. 2003; Tegmark et al. 2004), which are believed to be
in the near-linear stage. On small scales, however, the structures are
apparently in the non-linear stage, and even on large scales, a study
is needed of the weakly non-linear stage. Until now, the weakly non-
linear stage has been studied using Newtonian gravity only. In the

following we plan to investigate whether such usage of Newtonian
gravity in handling the large-scale structure can be justified from
the relativistic standpoint by studying the relativistic behaviours of
higher-order perturbations.

4 S E C O N D - O R D E R P E RT U R BAT I O N S

A N D N E W TO N I A N C O R R E S P O N D E N C E

We now consider equations perturbed to second order in the metric
and the energy–momentum tensor. Even to second order, we intro-
duce perturbations [as in equation (9)] which are always allowed.
We will also take the same identifications made in equation (10);
this point will be justified by our results below. To second order, the
perturbed parts of equations (1) and (2) give (Hwang & Noh 2005a)

δ̇ + 1

a
∇ · u = − 1

a
∇ · (δu) , (15)

1

a
∇ ·

(
u̇ + ȧ

a
u

)
+ 4πGμδ = − 1

a2
∇ · (u · ∇u)

− Ċ (t)αβ

(
2

a
∇αuβ + Ċ (t)

αβ

)
, (16)

where the gravitational wave part comes from the shear term in
equation (2) (Noh & Hwang 2004, 2005; Hwang & Noh 2005a) and
it follows equation (14); in order to derive these equations we also
used the G̃0

α-component (momentum constraint) of Einstein’s field
equations. By combining these equations we have

δ̈ + 2
ȧ
a

δ̇ − 4πGμδ = − 1

a2

∂

∂t
[a∇ · (δu)] + 1

a2
∇ · (u · ∇u)

+ Ċ (t)αβ

(
2

a
∇αuβ + Ċ (t)

αβ

)
, (17)

which also follows from equation (3). Equations (15)–(17) are our
extensions of equations (11)–(13) to second-order perturbations in
Einstein’s theory. We will show that, except for gravitational waves,
exactly the same equations also follow from Newton’s theory. The
presence of the gravitational waves, however, can be regarded as
one of the truly relativistic effects of gravitation.

In the Newtonian context, the mass and the momentum conser-
vations and Poisson’s equation give (Peebles 1980)

δ̇ + 1

a
∇ · u = − 1

a
∇ · (δu), (18)

u̇ + ȧ
a

u + 1

a
∇δ� = − 1

a
u · ∇u, (19)

1

a2
∇2δ� = 4πGδ, (20)

where δ� is the perturbed gravitational potential, u is the perturbed
velocity, and δ ≡ δ/. Equation (15) is the same as equation (18);
equation (16), ignoring gravitational waves, follows from equations
(19) and (20). Thus, equation (17) also naturally follows in Newton’s
theory (Peebles 1980). This shows the exact relativistic–Newtonian
correspondence to second order, except for the gravitational wave
contribution which is a pure relativistic effect. This also justifies
our identifications made in equation (10) to second order. Although
we identified the relativistic density and velocity perturbation vari-
ables, we cannot identify a relativistic variable that corresponds to
δ� to second order (Hwang & Noh 2005a). We believe that this can
be understood naturally because Poisson’s equation indeed reveals
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the action-at-a-distance nature and the static nature of Newton’s
gravitational theory compared with Einstein’s (Fock 1964; Rindler
1977). Poisson’s equation was formulated in 1812 which was
125 yr after the publication of Newton’s Principia in 1687. No-
tice that equations (18)–(20) are valid to fully non-linear order. In
our relativistic case, however, equations (15)–(17) are valid only to
the second order of perturbations.

5 T H I R D - O R D E R P E RT U R BAT I O N S A N D

P U R E R E L AT I V I S T I C C O R R E C T I O N S

Since the zero-pressure Newtonian system is exact to second order
in non-linearity, all non-vanishing third- and higher-order perturba-
tion terms in the relativistic analysis can be regarded as the pure
general relativistic corrections. Thus we have a clear reason to go to
third order, which has not previously been attempted. For simplic-
ity we ignore the gravitational wave contribution; for a complete
presentation, see Hwang & Noh (2005b). Based on our success in
the second-order perturbations, we continue identifying that equa-
tion (10) is valid even to third order, and we will take the consequent
additional third-order terms as the pure relativistic corrections. To
third order, the perturbed parts of equations (1) and (2) give (Hwang
& Noh 2005b)

δ̇ + 1

a
∇ · u = − 1

a
∇ · (δu)

+ 1

a
[2ϕu − ∇(�−1 X )] · ∇δ, (21)

1

a
∇ ·

(
u̇ + ȧ

a
u

)
+ 4πGμδ = − 1

a2
∇ · (u · ∇u)

− 2

3a2
ϕu · ∇ (∇ · u)

+ 4

a2
∇ ·

[
ϕ

(
u · ∇u − 1

3
u∇ · u

)]
− �

a2
[u · ∇(�−1 X )] + 1

a2
u · ∇ X

+ 2

3a2
X∇ · u, (22)

where

X ≡ 2ϕ∇ · u − u · ∇ϕ + 3

2
�−1∇ · [u · ∇(∇ϕ) + u�ϕ]. (23)

In order to derive these equations we also used the G̃0
α-component of

Einstein’s field equations. Equations (21) and (22) extend equations
(15) and (16) to third order. By combining equations (21) and (22)
we can derive

δ̈ + 2
ȧ
a

δ̇ − 4πGμδ = − 1

a2

∂

∂t
[a∇ · (δu)] + 1

a2
∇ · (u · ∇u)

+ 1

a2

∂

∂t
{a[2ϕu − ∇(�−1 X )] · ∇δ}

+ 2

3a2
ϕu · ∇(∇ · u)

− 4

a2
∇ ·

[
ϕ

(
u · ∇u − 1

3
u∇ · u

)]
+ �

a2
[u · ∇(�−1 X )] − 1

a2
u · ∇ X

− 2

3a2
X∇ · u,

(24)

which extends equation (17) to third order. The last five lines of equa-
tion (24) are pure third-order terms. The variable ϕ is a perturbed-
order metric variable in equation (4) in our comoving gauge
condition.

The third-order correction terms in equations (21)–(24) reveal
that all of them are simply of ϕ-order higher than the second-order
terms. Thus, the pure general relativistic effects are at least ϕ-order
higher than the relativistic/Newtonian ones in second order. Our
ϕ is related to the perturbed three-space curvature (in our comov-
ing gauge) and is dimensionless (Bardeen 1980). As we mentioned
earlier, ϕ in the comoving gauge is the same as a unique gauge-
invariant combination. To linear order such a combination was first
introduced by Field & Shepley (1968). For an explicit form of the
combination to second order, see equation (281) in Noh & Hwang
(2004). Notice that we only need the behaviour of ϕ to linear order.
To linear order, in terms of known Newtonian variables we have
(Hwang & Noh 2005b)

ϕ = −δ� + ȧ�−1∇ · u, (25)

and it satisfies (Hwang & Noh 1999a)

ϕ̇ = 0, (26)

thus ϕ = C (x) with no decaying mode; this is true considering the
presence of the cosmological constant. For � = 0, the temperature
anisotropy of cosmic microwave background radiation gives (Sachs
& Wolfe 1967; Hwang & Noh 1999b)

δT
T

∼ 1

3
δ� ∼ 1

5
ϕ. (27)

The observations of cosmic microwave background radiation give
δT /T ∼ 10−5 (Smoot et al. 1992; Spergel et al. 2003), thus

ϕ ∼ 5 × 10−5, (28)

in the large-scale limit near the horizon scale where GM/

(λc2) ∼ λ2/λ2
H approaches unity. Therefore, to third order, the pure

relativistic corrections are independent of the horizon scale and
depend on the linear-order curvature ϕ (∼gravitational potential
δ�) perturbation strength only, and are small. That is, compared
with the second-order terms, the third-order correction terms in
equations (21)–(23) only involve ϕ, and do not contain terms like
(aH)−1∇ϕ, etc.

6 D I S C U S S I O N

We have shown that to second order, except for the gravitational
wave contribution, the zero-pressure general relativistic cosmologi-
cal perturbation equations can be exactly identified with the known
equations in Newton’s theory. As a consequence, to second or-
der, we identified the correct relativistic variables which can be
interpreted as density δμ and velocity δθ perturbations in equa-
tion (10). We also showed that to second order, the Newtonian
hydrodynamic equations remain valid on all cosmological scales
including the super-horizon scale. More precisely, the relativistic
equations can be identified with the continuity equation and with
the divergence of the momentum conservation equation replacing
the Newtonian gravitational potential using Poisson’s equation. It
might also happen that our relativistic results give relativistic cor-
rection terms appearing to second order, as we approach and go
beyond the horizon scale, that are strongly relativistic regimes. Our
results show that there are no such correction terms appearing to
second order, and except for gravitational waves, the correspon-
dence is exact to that order. Ignoring gravitational waves, the pure
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relativistic correction terms start appearing from third order. Our
study shows that, to third order, the correction terms only involve ϕ

which is again independent of the horizon scale and is small on large
scales.

In the non-linear clustered regions, we may have ϕ ∼ δ� ∼
GM/(Rc2) where M and R are the characteristic mass and length
scales involved. In such clustered regimes the post-Newtonian ap-
proximation would complement our non-linear perturbation ap-
proach. The post-Newtonian approximation takes v/c-expansion
when the motions are slow, (v/c)2 � 1, and gravity is weak,
GM/(Rc2) � 1. Thus, this approximation is valid in the fully non-
linear case under a weakly relativistic situation, which can be com-
pared with the relativistic non-linear perturbation theory; the latter
is valid in the fully relativistic case under the weakly non-linear situ-
ation. A complementary result, showing the relativistic–Newtonian
correspondence in the Newtonian limit of the post-Newtonian ap-
proach, can be found in Kofman & Pogosyan (1995) (see also
Bertschinger & Hamilton 1994; Ellis & Dunsby 1997). In fact, the
Newtonian hydrodynamic equations naturally appear in the zeroth-
order post-Newtonian approximation (Chandrasekhar 1965). Re-
cently, we presented the fully non-linear cosmological hydrody-
namic equations with first-order post-Newtonian correction terms
(Hwang, Noh & Puetzfeld 2005); we showed that these correction
terms have typically GM/(Rc2) ∼ (v/c)2 ∼ 10−5 times smaller than
the Newtonian terms in the non-linearly clustered regions.

Therefore, our general relativistic results allow us to draw the
following important practical conclusion which is stated in our ti-
tle. As we prove that the Newtonian hydrodynamic equations are
valid on all cosmological scales to second order, and that the third-
order pure relativistic correction terms are small and independent
of the horizon, one can now use the large-scale Newtonian numeri-
cal simulation more reliably as the simulation scale approaches and
even goes beyond the horizon. The fluctuations near the horizon
scale are supposed to be linear or weakly non-linear; otherwise,
it is difficult to introduce the spatially homogeneous and isotropic
background world model which is the basic assumption of modern
cosmology. In the small-scale but fully non-linear stage, the post-
Newtonian approximation also shows that the relativistic correction
terms are small, thus the Newtonian simulations can be trusted.
The sub-horizon-scale Newtonian non-linear inhomogeneities are
not supposed to affect the homogeneous and isotropic background
world model (Siegel & Fry 2005). The other side of this conclusion
is that it might be difficult to find testable signatures of Einstein’s
gravity theory based on such large-scale weakly non-linear struc-
tures (with relativistic corrections) or small-scale fully non-linear
structures (with post-Newtonian corrections). However, it would be
interesting to find cosmological situations in which the pure rel-
ativistic correction terms in equations (21)–(24) or the first-order
post-Newtonian corrections terms derived in Hwang et al. (2005)
could have observationally distinguishable consequences. Since our
equations include the cosmological constant, our equations and con-
clusions are relevant to the currently favoured world models.

In our relativistic–Newtonian correspondence to second order, the
relativistic equations are identified with the continuity equation and
the divergence of the Euler equation replacing the Newtonian gravi-
tational potential using Poisson’s equation. It is important to remem-
ber that we showed the relativistic–Newtonian correspondence for
the density and velocity perturbations, but not for the gravitational
potential. Therefore, although our result shows that one can trust
cold dark matter simulations at all scales for the density and ve-
locity fields, it does not imply that one can trust the Newtonian
simulations for effects involving the gravitational potential, like the

weak gravitational lensing effects. In order to handle lensing ef-
fects properly we often require an extra factor of 2 which, indeed,
comes from the post-Newtonian effects. According to White, the
Newtonian simulations are normally employed for lensing studies
by tracing rays through the simulation (discretized into a set of lens
planes along the observer’s past light-cone) using the lowest post-
Newtonian approximation for the deflection on each lens plane; this
could include the standard factor of 2 in the light deflection formula
(White, private communication).

Our relativistic-Newtonian correspondence to the second-order
perturbation is valid for the scalar-type perturbation assuming a
single-component, zero-pressure and irrotational fluid in the flat
cosmological background. Dropping any of these conditions could
potentially lead to relativistic corrections. The genuine relativistic
correction terms appear as we consider the gravitational waves to
second order. We showed that pure relativistic correction terms in
the scalar-type perturbation appear at third order; we showed that
these correction terms do not involve the horizon scale and are small
in our observable patch of the Universe. It will be interesting to see
the effects of the radiation pressure and the time-varying dark en-
ergy (modelled by a minimally coupled scalar field) to second order
in perturbations. It is known that the effects of general relativistic
pressure cannot be simulated by Newtonian treatment even to linear
order (Sachs & Wolfe 1967); this is also true for the scalar field. Thus,
we anticipate that pure general relativistic effects will be present to
second order from both the pressure and the time-varying dark en-
ergy. Extensions to include the pressure, the rotation, the non-flat
background and the multi-component situation will be investigated
on future occasions.
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