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Here we generally prove that the axion as a coherently oscillating scalar field acts as a cold dark matter
in nearly all cosmologically relevant scales. The proof is made in the linear perturbation order. Compared
with our previous proof based on solutions, here we compare the equations in the axion with the ones
in the cold dark matter, thus expanding the valid range of the proof. Deviation from purely pressureless
medium appears in very small scale where axion reveals a peculiar equation of state. Our analysis is made
in the presence of the cosmological constant, and our conclusions are valid in the presence of other fluid
and field components.

© 2009 Elsevier B.V. All rights reserved.
Cold dark matter (CDM), despite its unknown nature, became
an essential ingredient in the current cosmological studies con-
cerning the large-scale structure formation. CDM in a cosmological
constant dominated world model (often termed the �CDM model)
is currently the most successful candidate of cosmological models.
The nature of CDM and the nature of cosmological constant (or
some other dynamical dark energy), however, still remain as fun-
damental mysteries of present day physical cosmology. From early
days of dark matter studies axion as a coherently oscillating scalar
field is widely accepted as a candidate for the CDM [1]. Confirma-
tion of the case using the relativistic linear perturbation analysis
was made previously [2,3], for a recent study see [4]. In this work
we present a more general proof that the axion can be regarded
as the CDM to the linear order perturbation. We also derive an ef-
fective equation of state of the axion which could be important in
the solar system scale if the system is in the linear regime. We set
c ≡ 1 ≡ h̄.

We consider the axion as a minimally coupled scalar field with
V = 1

2 m2φ2. The relevant current scales we are concerned corre-
spond to
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m
= 2.133 × 10−28h

(
m

10−5 eV

)−1

, (1)

where we set currently H ≡ 100h km/(s Mpc). In the following
analyses we strictly ignore H/m higher order terms. But we do
not impose any limit on the wavenumber k; this is more general
than our previous work in [3] and [4]. We take a spatially flat back-
ground with the cosmological constant Λ and the axion; inclusion
of Λ is also more general than previous studies.

We consider the temporal average of the oscillating scalar field
contributes to the background fluid quantities, thus

H2 = 8πG

3
μ + Λ

3
, Ḣ = −4πG(μ + p),

μ = 1

2

〈
φ̇2 + m2φ2〉, p = 1

2

〈
φ̇2 − m2φ2〉, (2)

φ̈ + 3Hφ̇ + m2φ = 0, (3)

where the angular bracket indicates averaging over time scale of
order m−1, see Eq. (5) in [3]. Under an ansatz

φ(t) = φ+(t) sin(mt) + φ−(t) cos(mt), (4)

ignoring H/m higher order terms, Eq. (3) leads to an approximate
solution [2]

φ(t) = a−3/2[φ+0 sin(mt) + φ−0 cos(mt)
]
, (5)
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where φ+0 and φ−0 are constant coefficients. Thus,

μ = 1

2
m2a−3(φ2+0 + φ2−0

)
, p = 0, (6)

and the background medium evolves exactly same as a pressure-
less ideal fluid [5].

We consider only the scalar-type perturbations. Our conven-
tions are [6]

ds2 = −(1 + 2α)dt2 − 2aβ,α dt dxα

+ a2[(1 + 2ϕ)δαβ + 2γ,αβ

]
dxα dxβ, (7)

T 0
0 = −μ − δμ, T 0

α = −1

k
(μ + p)v,α,

T α
β = (p + δp)δα

β + 1

a2

(
∇α∇β − 1

3
�δα

β

)
σ . (8)

To the linear order, both the vector-type (rotation) and the tensor-
type (gravitational waves) perturbation equations are not directly
affected by the presence of the minimally coupled scalar field in-
cluding the axion [6]. The basic perturbation equations we need
are the Raychaudhury equation, the energy-conservation equation,
and the momentum conservation equation, respectively [6]

κ̇ + 2Hκ +
(

3Ḣ − k2

a2

)
α = 4πG(δμ + 3δp), (9)

δμ̇ + 3H(δμ + δp) = (μ + p)

(
κ − 3Hα − k

a
v

)
, (10)

[a4(μ + p)v]·
a4(μ + p)

= k

a
α + k

a(μ + p)

(
δp − 2

3

k2

a2
σ

)
. (11)

The temporal average of oscillating scalar field contributes to per-
turbed fluid quantities as [6]

δμ = 〈
φ̇δφ̇ − φ̇2α + m2φδφ

〉
,

δp = 〈
φ̇δφ̇ − φ̇2α − m2φδφ

〉
,

a

k
(μ + p)v = 〈φ̇δφ〉, σ = 0. (12)

For the scalar field we have the equation of motion [6]

δφ̈ + 3Hδφ̇ + k2

a2
δφ + V ,φφδφ

= φ̇(κ + α̇) + (2φ̈ + 3Hφ̇)α. (13)

The above set of equations is spatially gauge-invariant. But we have
not taken the temporal gauge (hypersurface) condition which will
be used as an advantage in handling the mathematical analyses.

For δφ we take an ansatz

δφ(k, t) = δφ+(k, t) sin(mt) + δφ−(k, t) cos(mt). (14)

Using Eqs. (5) and (14), Eq. (12) gives to the leading order in H/m

δμ = a−3/2m

[
m(φ+0δφ+ + φ−0δφ−)

+ 1

2
(φ+0δφ̇− − φ−0δφ̇+)

]
− μα,

δp = 1

2
a−3/2m(φ+0δφ̇− − φ−0δφ̇+) − μα,

a

k
(μ + p)v = 1

2
a−3/2m(φ+0δφ− − φ−0δφ+). (15)

We have not taken the temporal gauge condition yet.
The comoving gauge takes v = 0 as the temporal gauge (hyper-
surface) condition; in the presence of additional fluid, like dust,
radiation, neutrinos, etc., our gauge corresponds to the axion-
comoving gauge. Eq. (11) gives

α = −δp

μ
. (16)

Eq. (10), and Eqs. (9) and (11), respectively, give

δ̇ = κ, (17)

κ̇ + 2Hκ = 4πGμδ − k2

a2

δp

μ
, (18)

where δ ≡ δμ/μ. Combining these equations we have

δ̈ + 2H δ̇ − 4πGμδ + k2

a2

δp

μ
= 0. (19)

This equation is well known in the Newtonian context, see
Eq. (15.9.23) in [7], and also valid in Einstein gravity context in
the limit of negligible pressure [8]. In the case of CDM we effec-
tively have δp = 0. However, the equation of state relating δp with
δμ in the case of axion is not determined at this point. The equa-
tion of state of axion will follow from the perturbed equation of
motion.

Under the comoving gauge, Eq. (15) gives

δφ−
φ−0

= δφ+
φ+0

. (20)

Relation between δp and δμ can be determined through α us-
ing Eq. (13). We solve Eq. (13) strictly to leading order in H/m as
the solution for the background is valid to such an order. Using
Eqs. (16) and (17), Eq. (13) gives

α = −1

2
a3/2 δφ+

φ+0

k2

m2a2
. (21)

Eq. (15) gives

δ = 2a3/2 δφ+
φ+0

(
1 + 1

4

k2

m2a2

)
. (22)

Therefore, we have an equation of state

δp = 1

4

k2

m2a2

1

1 + 1
4

k2

m2a2

δμ. (23)

The effective sound speed becomes

cs ≡
√

δp

δμ
= 1

2

k

ma

(
1 + 1

4

k2

m2a2

)−1/2

, (24)

which shows an interesting scale dependence; for k/(ma) � 1 the
time dependence cs ∝ 1/a is the same as in the ordinary matter
dominated medium, see later. Eq. (19) becomes

δ̈ + 2H δ̇ −
(

4πGμ − 1

4

k4

m2a4

1

1 + 1
4

k2

m2a2

)
δ = 0. (25)

We note that we only have assumed (H/m)2 � 1, but have not
assumed any condition on (k/aH)2. Thus our equations are valid
in all scales. Even in the small scales where the pressure gradi-
ent term has a role, in general we have k4/(m2a4 H2) 	 k2/(m2a2),
thus ignoring k2/(m2a2) term we have

δ̈ + 2H δ̇ −
(

4πGμ − 1 k4

2 4

)
δ = 0. (26)
4 m a
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This form was presented in Eq. (20) of [4] based on the zero-
shear gauge (often termed the conformal Newtonian gauge or the
longitudinal gauge). Although Eq. (26), more precisely Eq. (25), in
our comoving gauge is valid in all scales, in the zero-shear gauge
it is valid only for k/(aH) 	 1; the general density perturbation
equation of pressureless medium in the zero-shear gauge is quite
complicated, see Eq. (27) in [9]. The competition between gravity
and pressure gradient terms in Eq. (26) gives the Jeans scale; as-
suming a flat axion dominated model we have currently

λ J ≡ 2πa

k J
≡ 2π

(
16πGμm2)−1/4

= 5.4 × 1014cmh−1/2
(

m

10−5 eV

)−1/2

, (27)

which is quite small corresponding to the Solar System size for
m ∼ 10−5 eV, see also [4]. On scales larger than λ J , thus effec-
tively in all cosmologically relevant scales, the axion fluid can be
regarded as the pressureless ideal fluid. Therefore, the axion is jus-
tified as a CDM candidate.

Eq. (26) can be analytically solved for Λ = 0. For the back-
ground, we have a ∝ t2/3, H = 2/(3t), and μ = 1/(6πGt2). Eq. (26)
has an exact solution

δ± ∝ t−1/6 J∓5/2
(
3At−1/3), A ≡ k2

2m

(
t2/3

a

)2

. (28)

This can be compared with an exact solution in matter dominated
era with an equation of state p ∝ μγ [7]. For γ = 5/3 we have
the solution in Eq. (28) with A = cskt4/3/a, see Eq. (15.9.41) in [7];
notice that cs ∝ 1/a even in the matter dominated medium. Thus,
again we can identify cs = k/(2ma) as an effective sound speed of
the axion fluid.

For k2/(maH) � 1 and Λ = 0 we have a perturbative solution

δ(k, t) = c+(k)t2/3
[

1 + 3

8

k4

m2

(
t2/3

a

)4

t−2/3
]

+ c−(k)t−1
[

1 − 9

56

k4

m2

(
t2/3

a

)4

t−2/3
]
. (29)

This coincides with the solution in Eq. (25) of [3]. Our previous
proof of the axion as a CDM candidate presented in [3] was made
based on this and other solutions.

For a clear presentation, in this work we have considered a flat
background composed of a single axion component but including
the cosmological constant. Our analysis can be easily extended to
non-flat case as well as in the presence of additional fluids and
fields. We can show that axion behaves as a CDM even in such
more realistic situations. For example, in the presence of other
components the equation of state in Eq. (23) is valid for the ax-
ion component.
Eq. (27) shows an axion Jeans scale where linear perturbation
of axion fluid becomes stabilized (oscillates) under that scale. The
axion fluid shows peculiar equation of state and effective sound
speed presented in Eqs. (23) and (24). Although our neighborhood
in the solar system is in a significantly nonlinear stage it is curious
to see the possible observational signature of axion fluid based on
its contribution to effective pressure. This is left for future investi-
gation.

Recently we have shown that even to the second-order per-
turbation, the density and velocity perturbation equations of the
zero-pressure medium in Einstein’s gravity exactly coincide with
the ones in Newton’s gravity: we call this a relativistic/Newtonian
correspondence [10]. The relativistic/Newtonian correspondence to
the linear order can be found in Eq. (19) with vanishing pressure.
In the present work we have shown that the axion properly treated
in relativistic perturbation theory behaves as a pressureless fluid in
cosmologically relevant scales, thus justified as a CDM candidate:
we may call it the axion/CDM correspondence to the linear or-
der. Whether such a correspondence continues even in the case of
second-order perturbation is an interesting open issue at the mo-
ment. We will address this important issue in a future occasion.
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