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Abstract

Isophote of a surface consists of a loci of surface points whose normal vectors form

a constant angle with a given �xed vector. It also serves as a silhouette curve when the

constant angle is given as �=2. We present eÆcient and robust algorithms to compute

isophotes of a surface of revolution and a canal surface. For the two kinds of surfaces,

each point on the isophote is derived by a closed-form solution. To �nd each connected

component in the isophote, we utilize the feature of surface normals. Both surfaces

are decomposed into a set of circles, where the surface normal vectors at points on

each circle construct a cone. The vectors which form a constant angle with given �xed

vector construct another cone. We compute the parametric range of the connected

component of the isophote by computing the parametric values of the surface which

derive the tangential intersection of these two cones.

Keywords: Isophotes, silhouette curve, canal surface, surface of revolution.
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1 Introduction

Isophote is one of the characteristic curves on a surface. It consists of points on the surface,

at which normal vectors form a constant angle with given �xed vector. The isophote is

useful to understand or evaluate the characteristics of the surface. When given surface is

C
-continuous, the isophote of it is C
�1-continuous; thus, the set of isophotes with di�erent

constant angles is used to display irregularities of �rst and second derivatives and Gaussian

curvature of a surface [3, 4, 5, 7, 11].

Usually, the isophote of a given surface is computed with two steps: i) computing the

normal vector �eld N(u; v) of the surface S(u; v), and ii) tracing the surface points whose

normal vector N(u; v) forms a constant angle �, (0 � � � �=2), with given �xed vector d;

that is, we have to trace the points on S(u; v) that satisfy the following equation:

hN(u; v);di
kN(u; v)k = cos �:

Isophote serves as a silhouette curve when the angle � is given as a right angle. In this

case, d is the vector of the line of sight from in�nity. The points on the surface S(u; v) which

satisfy the following equation construct a silhouette curve :

hN(u; v);di
kN(u; v)k = cos

�

2
= 0:

This paper presents eÆcient and robust algorithms to compute the isophotes of a surface

of revolution and a canal surface. Both surfaces are frequently used in CAD/CAM and

surface/geometric modeling. Surface of revolution is generated by rotating a planar curve

around the rotation axis. Canal surface [10] is an envelope surface of a moving sphere with

varying radii. The well{known surfaces such as tori, Dupin cyclides (ring, spindle, and

horned) [12] and pipe surfaces [9] are the special cases of the canal surface. Canal surface is

often used to blend two surfaces which meet along tangent-discontinuous edges [1, 2, 8]. In

this case, isophotes are useful to detect discontinuities of the resulting composite surface at

the common boundaries of the patches.

Surface of revolution and canal surface have common properties that the surface can

be decomposed into a set of circles, and the surface normals on the same circle construct

a cone. We decompose given surface into one{parameter family of circles, K(t). For each

circle K(t
�
), t

�
2 t, we derive the equation of the surface normals at the points on it in a
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simpli�ed form, and present the equation to compute the isophote points on the circle. The

isophote points on each circle is derived by a closed-form solution.

The surface normals at the points on a circle K(t) construct a cone �(t). The vectors

which form a constant angle � with given �xed vector d also construct another cone �d.

Two cones �(t) and �d share the origin as their vertices in IR
3 space. The cone �d is a �xed

one, while the other cone �(t) varies with respect to the value of t.

When �(t) and �d do not intersect to each other except at the vertices, there is no point

on the circle K(t) whose normal vector forms an angle � with the vector d; that is, K(t)

does not contain any isophote point on it. When �(t) and �d intersect at two lines, K(t)

contains two points whose normal vectors form the angle � with d; that is, there are two

isophote points on K(t). Because the axis and half-angle of �(t) varies continuously, if K(ti)

contains two isophote points and K(tj) contains no isophote point, a value t
�
, where K(t

�
)

contains only one isophote point, always exists between ti and tj. This corresponds to the

case when �(t
�
) and �d intersect tangentially along a line. The last case is that �(t) and �d

share the same axes and half-angles. In this case, the circle K(t) itself is contained in the

isophote. Based on these considerations, we �nd the parametric range of t which derives the

connected component of the isophote. The values of t at which �(t) and �d have a tangential

intersection classify the range of t at which K(t) contains isophote points or not.

F. Hohenberg [6] and W. Wunderlich [13], which are books on classical descriptive ge-

ometry, show the techniques to compute silhouette curves of a surface of revolution and a

canal surface. The basic idea to compute isophote which is presented in this paper is based

on the techniques in descriptive geometry.

This paper is organized as follows. Section 2 and 3 present eÆcient and robust algorithms

to compute isophotes of a surface of revolution and a canal surface, respectively. Section 4

concludes this paper.

2 Isophote of a Surface of Revolution

Given a surface of revolution and a �xed vector d, we assume that the pro�le curve C(t) of

the surface is a planar curve on xz-plane; that is, C(t) = (x(t); 0; z(t)), tmin � t � tmax, and

the surface is generated by rotating C(t) around z-axis. We also assume that given �xed
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Figure 1: The vectors which form a constant angle � with d

vector d is contained in xz-plane; that is, d = (dx; 0; dz). These assumptions do not lose the

generality, because by applying rotation and translation, an arbitrary surface of revolution

and a given vector may be positioned like the above.

The isophote of the surface of revolution consists of a set of points whose normal vectors

form a constant angle with the vector d. The vectors which form a constant angle � with d

construct a cone. Then, the vertex of this cone is at the origin, the axis is parallel to d, and

the half-angle is �. Figure 1(a) shows this cone.

The surface of revolution generated by rotating the curve C(t) around z-axis is de�ned

by

S(t; �) = (cos �x(t); sin �x(t); z(t));

where �� � � < �. The normal vector N(t) at a point on the curve C(t) is computed as

follows:

N(t) = (z0(t); 0;�x0(t)):

Then, the normal vector �eld of the surface S(t; �) is computed by rotating the normal vector

N(t):

N(t; �) = (cos �z0(t); sin �z0(t);�x0(t)):

Figure 2(a) shows a normal vector at a point on the pro�le curve C(t). Figure 2(b) shows

a rotation of the normal vector around z-axis which also represents normal vectors at the

points on the cross-section circle of the surface of revolution, where the cross-section circle

which contains C(t
�
) is represented as: (cos �x(t

�
); sin �x(t

�
); z(t

�
)).

The isophote of a surface of revolution S(t; �) consists of points which satisfy the following
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Figure 2: A normal vector at a point on a pro�le curve and the normal vector �eld of a

cross-section circle of a surface of revolution

condition:
hN(t; �);di
kN(t; �)k = cos �;

which can be rewritten as follows:

cos � =
cos �

q
z0(t)2 + x0(t)2 + dzx

0(t)

dxz0(t)
: (1)

When a �xed value of t, t
�
, is given, two isophote points pa(t�) and pb(t�) on the circle

S(t
�
; �) are derived as follows by using Equation (1):

pa(t�) = (cx(t
�
);
p
1� c2x(t

�
); z(t

�
))

pb(t�) = (cx(t
�
);�

p
1� c2x(t

�
); z(t

�
));

where

c =
cos �

q
z0(t

�
)2 + x0(t

�
)2 + dzx

0(t
�
)

dxz0(t�)
:

The parametric values of t which classify the real and imaginary roots of � can be com-

puted by solving the following equation:

cos �
q
z0(t)2 + x0(t)2 + dzx

0(t)

dxz0(t)
= �1: (2)

The degree of Equation (2) is 2(m� 1), where m is the degree of C(t).

Rather than solving Equation (2) to compute the range of t at which the real component

of the isophote exists, we derive more eÆcient method which uses the geometric properties
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Figure 3: Normal vector of a pro�le curve and a surface of revolution

of the surface normals as follows. Let �d denote the cone which consists of vectors whose

angle with the vector d is �. When we intersect the cone �d with xz-plane, following two

lines are derived (see Figure 1(b)):

(sin Æ)x� (cos Æ)z = 0;

where

Æ = tan�1(dz=dx)� �:

Let us denote the normal vector of the pro�le curve C(t) asN(t), whereN(t) = (z0(t); 0;�x0(t)).
LetN

�
(t) denote the symmetric image ofN(t) about z-axis; that is,N

�
(t) = (�z0(t); 0;�x0(t)),

and � denote a cone which is derived by rotating the normal vector N(t
�
) around z-axis.

Notice that � is the same as the cone which is derived by rotating N
�
(t

�
). If N(t) [N

�
(t)

intersects with the lines (sin Æ)x � (cos Æ)z = 0 at the parametric value of t
�
, two cones �d

and � are tangent to each other, and vice versa (see Figure 3). Moreover, this implies that

the real component of the isophote starts or ends when t = t
�
. The intersection between

N(t) and the line (sin Æ)x� (cos Æ)z = 0 is derived as a following equation:

(sin Æ)z0(t) + (cos Æ)x0(t) = 0;

where sin Æ and cos Æ are constant values. Similarly, for N
�
(t), the intersection points are

computed by

�(sin Æ)z0(t) + (cos Æ)x0(t) = 0:
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Algorithm: Isophote of SurfaceOfRevolution

Input:

C(t) = (x(t); 0; z(t)), /* profile curve of the surface of revolution*/

d = (dx; 0; dz), /* given vector */

�, /* the angle with vector d */

� /* tolerance for the isophote curve */

begin

/* degenerate cases */

if dx = 0 then begin

for each t
�
2 f t j x0(t)

q
d2
z
� cos2 � � cos �z0(t) = 0 g do

if dzx
0(t

�
)� cos �

q
z0(t

�
)2 + x0(t

�
)2 = 0 then

draw a circle S(t
�
; �), where 0 � � < 2�;

exit;

end

for each t
�
2 f t j z0(t) = 0 g do begin

if dzx
0(t

�
)=kx0(t

�
)k = cos � then

draw a circle S(t
�
; �), where 0 � � < 2�;

end

/* generic case */

Æ = tan�1(dz=dx)� �;

T = f t j (sin Æ)z0(t)� (cos Æ)x0(t) = 0g [ ftmin; tmaxg;
sort t values in T : T = f ti j 0 � i < n g;
for i = 1 to n� 1 do begin

t
�
= (ti�1 + ti)=2;

if z0(t
�
) 6= 0 and �1 �

cos �
q
z0(t

�
)2 + x0(t

�
)2 + dzx

0(t
�
)

dxz0(t�)
� 1 then begin

New Curve(Ca); New Curve(Cb);

attach two points pa(ti�1) and pb(ti�1) to Ca and Cb, respectively;

Adaptive Subdivide (ti�1, ti);

attach two points pa(ti) and pb(ti) to Ca and Cb, respectively;

draw two curves Ca and Cb;

end

end

end

Algorithm: Adaptive Subdivide

Input: t0, t1;

begin

t
�
= (t0 + t1)=2;

da = distance from pa(t�) to line segment between pa(t0) and pa(t1);

db = distance from pb(t�) to line segment between pb(t0) and pb(t1);

if max(da; db) � � then begin

Adaptive Subdivide (t0, t
�
);

attach two points pa(t�) and pb(t�) to Ca and Cb, respectively;

Adaptive Subdivide (t
�
, t1);

end

end
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Figure 4: Examples of the silhouette curves (bold curves) of a surface of revolution

The solutions of these equations are the ranges of t at which the real components of the

isophote exist. When the degree of C(t) is m, that of this equation is m � 1; thus, the

method using this equation is quite more eÆcient than the previous method.

Algorithm Isophote of SurfaceOfRevolution sketches the suggested method with ad-

ditional considerations on degenerate cases. Figure 4 shows the examples of some silhouette

curves of a surface of revolution computed by the suggested method. The pro�le curve is

a cubic Bezier curve, and d = (�1; 0;�2), (�1; 0;�1), (�1; 0; 0), (�1; 0; 1), and (�1; 0; 2),
respectively, from Figure 4(a) to (e). Notice that the hidden surfaces of given surface of

revolution are removed, while the components of the isophote on the hidden surface are not

removed.

Figure 5 shows the set of isophotes of a surface of revolution computed with various

angles: � = (90� 10i)Æ; i = 0::8.
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(a) (b)

Figure 5: The set of isophotes of a surface of revolution: (a) surface of revolution, (b)

isophotes (bold curves)

3 Isophote of a Canal Surface

In this section, we present an algorithm to compute the isophote of a canal surface. We

derive the parametric representation of a canal surface �rst. Then, we show the traditional

method to compute the isophote. Later, we suggest a more eÆcient algorithm which uses

the geometric property of the canal surface.

3.1 Parametric Representation of a Canal Surface

This section derives a parametric representation of a canal surface. Canal surface is an

envelope surface of a moving sphere with varying radii. The center trajectory C(t) and the

radius function r(t) of given moving sphere determine a canal surface. For the canal surface

to be regular, we assume that the curve C(t) has C2-continuity, and the conditions r(t) > 0

and kC 0(t)k2 > r0(t)2 are satis�ed for all values of t.

An arbitrary point x = (x; y; z) on the canal surface is de�ned by two equations:

kx� C(t)k2 � r(t)2 = 0; (3)

hx� C(t); C 0(t)i+ r(t)r0(t) = 0: (4)

Let �(t) denote the angle between two vectors x�C(t) and C 0(t). The following relation is
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derived by using Equations (3) and (4) (Refer to Figure 6):

cos�(t) =
hx� C(t); C 0(t)i
kx� C(t)kkC 0(t)k = � r0(t)

kC 0(t)k : (5)

(a) (b)

rk(t)

r(t)C(t)
�(t)

Ck(t)

K(t; �)

x

C 0(t)

Ck(t)� C(t)

�(t)

rk(t)
�(t)

x

y

z

Figure 6: Cone of the normal vectors of a characteristic circle

The moving sphere de�ned by Equation (3) meets the canal surface at a circle which is

called a characteristic circle. When we consider the canal surface as a set of characteristic

circles, we can denote the canal surface as K(t; �), where K(t
�
; �) is a characteristic circle

contained in a moving sphere with center C(t
�
) and radius r(t

�
).

By using Equation (5), we derive the center point Ck(t), radius rk(t), and main plane

normal Nk(t) of a characteristic circle as follows:

Ck(t) = C(t) + r(t) cos�(t)
C 0(t)

kC 0(t)k = C(t)� r(t)r0(t)
C 0(t)

kC 0(t)k2

rk(t) = r(t) sin�(t) = r(t)

q
kC 0(t)k2 � r0(t)2

kC 0(t)k
Nk(t) = C 0(t):

Then, the parametric representation of a canal surface, K(t; �), tmin � t � tmax and 0 � � <

2� is as follows:

K(t; �) = Ck(t) + rk(t)(cos �v1(t) + sin �v2(t));
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where

v1(t) =
C 0(t)� C 00(t)

kC 0(t)� C 00(t)k

v2(t) =
v1(t)� C 0(t)

kv1(t)� C 0(t)k :

The vectors v1(t) and v2(t) are orthogonal unit vectors which determine the orientation of

a characteristic circle.

3.2 Traditional Approach

Traditional approach to compute the isophote of a canal surfaceK(t; �) is as follows. Without

loss of generality, we may assume that given vector is d = (0; 0; 1) by applying rotation and

translation to both canal surface and the vector d if necessary. The normal vector �eld for

the surface K(t; �) is as follows:

N(t; �) =
@K(t; �)

@t
� @K(t; �)

@�
:

Then, the isophote with a �xed angle � is derived as follows:

hN(t; �);di
kN(t; �)k = cos �:

It is diÆcult to compute the isophote by solving this equation because the degree of the

equation is high. When we consider the canal surface as a set of characteristic circles and use

geometric property of the normal vectors at the points on a characteristic circle, there is a

more eÆcient method to compute the isophote of a canal surface. The next section presents

the method.

3.3 New Approach

We present an algorithm which computes the isophote of given canal surface K(t; �) eÆ-

ciently. We use the fact that the surface normals at points on a characteristic circle of a

canal surface construct a cone. If the normal vector at a point p forms an angle � with the

vector d, the point p is included in the isophote. Under the assumptions that 0 � � � �=2

and d = (0; 0; 1), we compute the isophote of a canal surface with the angle �. For the spine

curve C(t) = (x(t); y(t); z(t)), we derived the center Ck(t), radius rk(t), and the main plane

normal Nk(t) of the characteristic circle in Section 3.1.

11



When a point p is embedded in the canal surface and a moving sphere with center C(t)

and radius r(t) at the same time, we can prove that the canal surface normal at point p can

be de�ned as p�C(t) as follows. According to the de�nition of the canal surface, the tangent
plane of the surface at p is also that of the sphere with center C(t) and radius r(t). When

we consider the point p as a point embedded in the sphere, the vector p� C(t) is a normal

vector of the tangent plane of the sphere at p. The point p is also on the canal surface; thus,

the vector p� C(t) is also a surface normal vector at point p (Refer to Figure 7).

p

r(t)

C(t)

Figure 7: Tangent plane of the canal surface at point p

Based on this consideration, the normal vectors N(t; �) at the points on the surface

K(t; �) are computed as follows :

N(t; �) = K(t; �)� C(t);

where K(t; �) = Ck(t)+ rk(t)(cos �v1(t)+sin �v2(t)). The length of the vector N(t; �) is r(t)

because kK(t; �)� C(t)k = r(t). Thus, N(t; �) is normalized as follows:

N(t; �)

kN(t; �)k = �r0(t) C 0(t)

kC 0(t)k2 +
q
kC 0(t)k2 � r0(t)2

kC 0(t)k (cos �v1(t) + sin �v2(t)):

The parameter values of t and � of isophote satisfy with the following condition:

hN(t; �);di
kN(t; �)k = cos �;
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which derives the following equation:

A(t) cos � +B(t) sin � +D(t) = 0; (6)

where

A(t) = hv1(t);di
q
kC 0(t)k2 � r0(t)2

B(t) = hv2(t);di
q
kC 0(t)k2 � r0(t)2

D(t) = �r0(t)hC
0(t);di

kC 0(t)k � cos �kC 0(t)k:

We derive following equations from Equation (6):

cos � =
�A(t)D(t)�B(t)

q
A(t)2 +B(t)2 �D(t)2

A(t)2 +B(t)2

sin � =
�A(t) cos � �D(t)

B(t)
:

By using Equation (6), we derive two isophote points pa(t�) and pb(t�) on the characteristic

circle K(t
�
; �) as follows:

pa(t�) = Ck(t�) + rk(t�)(cav1(t�) + sav2(t�))

pb(t�) = Ck(t�) + rk(t�)(cbv1(t�) + sbv2(t�));

where

ca =
�A(t

�
)D(t

�
) +
q
A(t

�
)2 +B(t

�
)2 �D(t

�
)2

A(t
�
)2 +B(t

�
)2

sa =
�A(t

�
)ca �D(t

�
)

B(t
�
)

;

and

cb =
�A(t

�
)D(t

�
)�
q
A(t

�
)2 +B(t

�
)2 �D(t

�
)2

A(t
�
)2 +B(t

�
)2

sb =
�A(t

�
)cb �D(t

�
)

B(t
�
)

:

For the vector d = (0; 0; 1), the set of vectors which form an angle � with d constructs

a cone whose vertex is at the origin, axis is parallel to z-axis, and the half-angle is �.

Let's denote this cone as �d (Figure 8). When we consider the canal surface as a set of

characteristic circles, for a characteristic circle K(t
�
; �), the set of surface normals at points

13



z
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x

y

Figure 8: The cone �d

on it constructs another cone �(t
�
). The vertex of the cone �(t

�
) is at the origin, the axis is

C 0(t), and the half-angle is �(t) (refer to Section 3.1 and Figures 6(a) and (b)).

If two cones �d and �(t�) do not intersect each other (Figure 9(a)), the characteristic circle

K(t
�
; �) does not contain a point included in the isophote. When there are two intersection

lines between two cones �d and �(t
�
) (Figure 9(b)), there are two points of isophote on the

circle K(t
�
; �). When the intersection contains the vector N(t

�
; �

�
), the point K(t

�
; �

�
) on

the canal surface is embedded in the isophote.

(a) (b)

�(t)

�

y

z

x

�d

�(t)

�(t)
�

y

z

x

�d

�(t)

Figure 9: No intersection and intersection cases of �(t) and �d

The value of the parameter t which classify the range for Equation (6) to have real roots

of � is computed by �nding the value of t at which �(t) and �d intersect tangentially. Two

cones have a tangential intersection only when the following condition is satis�ed (see Figure
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Figure 10: Three cases of 
(t) = j�(t)� �j

10):


(t) = j�(t)� �j;

where 
(t) is an angle between C 0(t) and d, and 0 � 
(t) < �.

From the fact that C(t) = (x(t); y(t); z(t)), cos�(t) =
�r0(t)
kC 0(t)k , and cos 
(t) =

hC 0(t);di
kC 0(t)kkdk ,

we derive

cos 
(t) = cos(�(t)� �) = cos�(t) cos � � sin�(t) sin�;

which derives

sin2 �(x0(t)2 + y0(t)2 + z0(t)2)� r0(t)2 � z0(t)2 � 2z0(t)r0(t) cos � = 0: (7)

By solving Equation (7), we �nd the parametric range of real components in the isophote

eÆciently. When the degree of K(t; �) in t is m, the degree of Equation (7) is less than m.

When the degree of the spine curve C(t) is k and that of the radius function r(t) is n, the

degree of Equation (7) is as follows:

max(2(k � 1); 2(n� 1); k + n� 2):

Algorithm Isophote of CanalSurface sketches the method suggested in this section

with considerations on the degenerate cases. Figure 11 shows some examples of silhouette

curves of the canal surfaces computed by the suggested method. All �ve canal surfaces are the

same canal surface each of which has di�erent orientation, where d is �xed as (0; 0; 1). Figure

12 illustrates the set of isophotes of a canal surface, where the angle � = 90� 20i; i = 0::4.

The axis curve of the canal surface in Figure 11 and 12 is a cubic B-spline curve with six

control points. The degree of the radius curve for both �gures is also three.
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Algorithm: Isophote of CanalSurface

Input: C(t) = (x(t); y(t); z(t)), /* spine curve of canal surface */

r(t), /* radius function of canal surface */

d = (0; 0; 1), /* given fixed vector */

�, /* the angle with the vector d */

� /* tolerance for the isophote curve */

begin

/* degenerate case */

for each t
�
2 f t j A(t) = 0 and B(t) = 0 g do

if D(t
�
) = 0 then

draw a circle K(t
�
; �), 0 � � < 2�;

/* generic case */

T = ftmin; tmaxg
[ f t j sin2 �kC 0(t)k2 � r0(t)2 � z0(t)2 � 2z0(t)r0(t) cos � = 0 g;

sort t values in T : T = f ti j 0 � i < n g;
for i = 1 to n� 1 do begin

t
�
= (ti�1 + ti)=2;

if A(t
�
)2 +B(t

�
)2 �D(t

�
)2 � 0 then begin

New Curve(Ca); New Curve(Cb);

attach two points pa(ti�1) and pb(ti�1) to Ca and Cb, respectively;

Adaptive Subdivide (ti�1, ti);

attach two points pa(ti) and pb(ti) to Ca and Cb, respectively;

draw two curves Ca and Cb;

end

end

end

Algorithm: Adaptive Subdivide

Input: t0, t1;

begin

t
�
= (t0 + t1)=2;

da = distance from pa(t�) to line segment between pa(t0) and pa(t1);

db = distance from pb(t�) to line segment between pb(t0) and pb(t1);

if max(da; db) � � then begin

Adaptive Subdivide (t0, t
�
);

attach two points pa(t�) and pb(t�) to Ca and Cb, respectively;

Adaptive Subdivide (t
�
, t1);

end

end
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Figure 11: Examples of silhouette curves (bold curves) of canal surfaces
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Figure 12: The set of isophotes (bold curves) of a canal surface

4 Conclusion

In this paper, we presented eÆcient and robust geometric algorithms to compute the isophote

of a surface of revolution and a canal surface. These algorithms use the fact that the surfaces

are decomposed into a set of circles, and the surface normals on the same circle construct a

cone. By considering the relation between this cone and another cone(de�ned by the constant

angle with the given vector d), the range of the isophote is computed, and the isophote itself

is traced by using a closed form solution.
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