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Abstract

This thesis proposes e�cient and robust geometric algorithms that classify and de-

tect all possible topological types of the intersection curve of a torus and a simple

surface (i.e., a plane, natural quadric, or another torus), including all degenerate

conic sections and singular intersections. Given a torus and a simple surface, we

treat one surface as the envelope surface of a moving ball, and the other surface as

an obstacle. In this case, the Con�guration space (C-space) obstacle is the same as

the constant radius o�set of the original obstacle, where the radius of the moving

ball is taken as the o�set distance. Based on the intersection between the C-space

obstacle and the trajectory of the moving ball's center, all the intersection loops and

singular contact point/curve of the original surfaces can be detected. Moreover, this

thesis proposes simple geometric methods that detect and compute all degenerate

conic sections (circles) in the torus/plane, torus/natural-quadric, and torus/torus

intersection curves.



Chapter 1

Introduction

Plane, natural quadrics (sphere, cylinder, and cone), and torus form the so-called

CSG primitives in solid modeling systems. They have been frequently used in mod-

eling simple mechanical parts. In the Boolean operations (union, intersection, and

di�erence) of CSG solid objects, we need to compute the intersection curves of these

simple surfaces.

Many algorithms have been developed for intersecting two freeform surfaces rep-

resented in parametric and/or implicit forms. (See References [9, 19, 23] for surveys

on surface intersection algorithms). In principle, they can be used for intersect-

ing two simple surfaces. Unfortunately, there has been no single algorithm that

can compute the intersection curve of two general surfaces accurately, robustly, and

e�ciently, while requiring no user intervention (see Chapter 12 of Hoschek and

Lasser [9] for more details). In particular, when two surfaces have singular intersec-

tions, general algorithms have serious drawbacks in robustness. Even if we restrict

the application of general algorithms to simple surfaces only, we cannot expect sig-

ni�cant improvement. Therefore, general surface intersection algorithms are not

appropriate for intersecting simple surfaces (such as plane, natural quadrics, and

torus).

For intersecting two quadric surfaces, there are many specialized algorithms [6,

12, 13, 16, 18, 20, 26, 28, 29] that provide better solutions (in e�ciency and ro-

bustness) than general surface intersection algorithms. Algebraic methods [6, 12,

13, 26, 29] (based on symbolic manipulation of surface equations) are general in

the sense that they can handle all types of quadric surfaces. However, when the

1



algebraic algorithms are implemented using 
oating-point arithmetic, it is very dif-

�cult to ensure their robustness. Numerical errors in algebraic quantities may result

in incorrect geometric decisions, especially when two intersecting surfaces have a

nearly degenerate/singular con�guration. More seriously, surface coe�cients have

no clear geometric meaning, which makes consistent geometric treatment more dif-

�cult. Purely symbolic computations may be used to guarantee the robustness of

these algebraic algorithms; however, the problem is then how to maintain the e�-

ciency of these algorithms.

In the case of intersecting two natural quadrics, the situation is much better.

There are reliable geometric algorithms that can intersect two natural quadrics e�-

ciently and robustly [16, 18, 20, 28]. In particular, Miller and Goldman [18] classify

necessary and su�cient geometric conditions that correspond to all possible types of

degenerate/singular intersections. All computations employed in these algorithms

have clear geometric meanings. Moreover, they can be carried out e�ciently and ro-

bustly. Together with similar geometric algorithms for computing the planar sections

of natural quadrics [11, 17], these algorithms [16, 18, 20, 28] can support e�cient

and robust Boolean operations for CSG objects constructed by planes and natural

quadrics. A natural question is how to extend the geometric coverage to include

torus.

There are algebraic methods for intersecting two arbitrary cyclides [5, 10, 15].

Plane, natural quadrics, and torus are special types of cyclide. Therefore, these algo-

rithms can be used in intersecting a torus with other simple surfaces (plane, natural

quadrics, and torus). Similarly to the case of intersecting two quadric surfaces, al-

gebraic methods are general, but they have limitations in robustness. Therefore, we

need to develop geometric algorithms that can guarantee e�ciency and robustness

at the same time.

This thesis proposes e�cient and robust geometric algorithms that classify and

detect all possible topological types of the intersection curve of a torus and a sim-

ple surface (i.e., a plane, a natural quadric, or another torus), and generate one

starting point on each connected component (for torus/plane, torus/sphere, and

torus/cylinder intersections), or generate a set of starting points which detects

all connected components (for torus/cone and torus/torus intersections). Starting

points and singular points are computed by using vector/distance computations or

curve/surface intersections (see Table 4.1). By solving quadratic polynomial equa-

2



tions, we can compute/detect starting points and singular points in torus/plane and

torus/sphere intersection curves. The solutions of at most fourth order polynomial

equations are required in computing/detecting starting points and singular points in

the intersection curve of a torus and a cylinder (or a cone or another torus). Since

polynomial equations of degree up to four have closed-form solutions using radi-

cals, all required computations can be implemented e�ciently and robustly using


oating-point arithmetic. (The torus/simple-surface intersection curve itself is then

numerically approximated with a sequence of cubic curve segments [1, 3, 4].) De-

generate conic sections (circles) in a torus/simple-surface intersection curve can be

detected/constructed using a few additional simple geometric tests/computations.

Each algorithm proposed in this thesis reduces the surface/surface intersection

problem to a curve/surface intersection problem based on a geometric transformation

that generates Con�guration space (C-space) obstacles [2, 14]. In robotics, the

C-space approach (proposed by Lozano-P�erez [14]) reduces the collision detection

problem between a moving robot and an obstacle (i.e., the intersection between two

solid objects) to a simpler problem of testing the containment of a point (called

the reference point of the robot) in the C-space obstacle. In the case of a robot

bounded/modeled by a sphere, the C-space obstacle with respect to the sphere

(robot) is essentially the same as the o�set of the original obstacle [2].

Given a torus and a simple surface, we treat one surface as an obstacle and the

other surface as the envelope surface of a moving ball. The C-space obstacle is then

computed by o�setting the original obstacle, where the radius of the moving ball is

taken as the o�set radius [2]. The intersection points between the C-space obstacle

and the trajectory of the moving ball's center provide a simple way of detecting and

classifying the topological type and possible singularities of the intersection curve.

Chapter 4 has more details of the C-space approach.

Although the C-space approach detects all singularities and completely deter-

mines the topological type of a torus/simple-surface intersection curve, it does not

provide a direct classi�cation of all degenerate conic sections in the intersection

curve. Thus, we present an approach that detects all degenerate conic sections in

the intersection curve. In classical geometry, it is well known that circles are the

only conic sections that can be embedded in a torus. Thus, all conic sections in the

torus/simple-surface intersection curve must be circles. Based on the classi�cation

of circles embedded in a torus and a simple surface, this thesis presents simple and

3



e�cient geometric algorithms that detect and compute all degenerate conic sections

(circles) in the torus/plane, torus/natural-quadric, and torus/torus intersections.

The detection of degenerate circles in torus/simple-surface intersection is impor-

tant since circles can be represented exactly and e�ciently. In the case of torus/plane

intersection (TPI) and torus/sphere intersection (TSI) curves, degenerate circles and

singular intersection curves are all rational. The real, a�ne TPI and TSI curves are

the same as the intersection curves of two quadric surfaces. Farouki et al. [6] showed

that all degenerate conic sections and singular intersections between two quadric

surfaces are rational curves. Moreover, Shene and Johnstone [28] discussed the im-

portance of conic sections in blending two natural quadrics using cyclides. We have

a similar advantage in torus/simple-surface intersection. Let Td be the o�set of a

torus and Sd be the o�set of the other surface with respect to the o�set distance d.

When the o�set surfaces Td and Sd intersect in a degenerate circle of radius R, the

torus and the other surface can be blended using a torus with a major radius R and

a minor radius d (see Rossignac and Requicha [24, 25]).

The computation of torus/simple-surface intersection curves proceeds as follows

(see Figure 1.1). In the �rst step, we detect and compute all degenerate circles in

the intersection curve. After that, we detect and compute other components which

are not circles using the C-space approach.

This thesis is organized as follows. In Chapter 2, we de�ne some basic notations

and present an elementary proof that circles are the only conic sections that can be

embedded in a torus. Chapter 3 shows simple geometric algorithms that detect and

compute all degenerate conic sections (circles) in a torus/simple-surface intersection

curve. In Chapter 4, we explain the basic idea of the Con�guration-space (C-space)

approach in computing torus/simple-surface intersection curves, and compare the

C-space approach with other methods. In Chapters 5{9, all possible types of in-

tersection curves of a torus with a plane, sphere, cylinder, cone, and another torus

are classi�ed, respectively. Each chapter presents an e�cient and robust geometric

algorithm that detects and constructs the intersection curve (including degenerate

circles) of a torus and a simple surface. Finally, in Chapter 10, we conclude this

thesis and discuss possible further extensions of this thesis.
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Input a torus and a simple surface

Detect and compute conic sections

in the torus/simple-surface intersection

Start

Intersection consists of
conic sections only?

Compute starting points and singular points

for the intersection curve based on a C-space approach

Output the intersection curve

End

YES

NO

Figure 1.1: Flow chart for the torus/simple-surface intersection algorithm.
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Chapter 2

Mathematical Preliminaries

In this chapter, we introduce some basic notations and background materials use-

ful in understanding the concepts and algorithms presented in later chapters. In

Section 2.1, we introduce notations for geometric primitives that will be used in

this thesis. Section 2.2 presents an elementary proof that circles are the only conic

sections that can be embedded in a torus. Moreover, Section 2.2 classi�es the circles

embedded in a torus as three special types: (i) pro�le circles, (ii) cross-sectional

circles, and (iii) Yvone-Villarceau circles.

2.1 Notations for Geometric Primitives

Notations for basic geometric primitives are summarized in Table 2.1, where 3D

points/vectors are represented in boldface.

When we assume that the torus is given in a standard form Tr;R((0; 0; 0); e3),

the torus can be constructed by rotating the circle Cr((R; 0; 0); e2) about the z-axis

(see Figure 2.1). At this time, r and R are the minor and major radii of the torus,

respectively. Moreover, the circle CR((0; 0; 0); e3) (which is constructed by rotating

the point (R; 0; 0) about the z-axis) is called the main circle of the torus, and the

plane which contains the main circle is called the main plane of the torus.

Note that the torus Tr;R(p;N) is the boundary of the sweeping volume [q2CR(p;N)

Br(q). When the ball center q is located on the main circle of the torus (i.e.,

q 2 CR(p;N)), the torus Tr;R(p;N) and the ball Br(q) share a cross-sectional circle

Cr(q;Nq), where Nq = N � q�p
kq�pk . Figure 2.2 shows three di�erent types of tori

6



x y

z

r

R
x y

z

(a) (b)

Figure 2.1: Torus in a standard form.

N
CR(p, N)

(a) Tr;R(p;N) with r < R

Cr(q, Nq)

p

q

Nq

N

(b)Tr;R(p;N) with r = R

p

vertex of

self-intersection

N

(c)Tr;R(p;N) with r > R

p

vertices of

self-intersection

self-

intersection

Figure 2.2: The three types of tori.
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Tr;R(p;N): for (a) r < R, (b) r = R, and (c) r > R. In this paper, we assume

that the input torus is always of the �rst type; that is, we assume 0 < r < R. How-

ever, when we o�set the torus for the generation of a C-space obstacle, the resulting

C-space torus may be of the type (b) or (c).

In this thesis, we consider four topological types of a surface patch: (i) a disk

type, (ii) a degenerate disk type, (iii) a cylindrical type, and (iii) a degenerate cylin-

drical type. A surface patch of disk type represents a continuous surface without

an interior hole, i.e., the boundary curve consists of a closed loop (Figure 2.3(a)).

A surface patch of degenerate disk type represents a continuous surface with a self

intersection point on the boundary curve (Figure 2.3(b)). A surface patch of cylin-

drical type represents a continuous surface with an interior hole, i.e., the boundary

curve consists of two closed loops with no self-intersection (Figure 2.3(c)). A surface

patch of degenerate cylindrical type represents a continuous surface with an interior

hole and the boundary curve consists of an 8-�gured loop (Figure 2.3(d)).

(a) (b) (c) (d)

Figure 2.3: The topological types of a surface patch.

We de�ne Bdr as the boundary of a closed (volumetric) region in IR
3. For ex-

ample, Bdr([Br(C(t))) means the envelope surface of a moving ball (with radius

r) along a center trajectory C(t). For the sake of simplicity, we use the notation

[Br(Ci) (or [Sr(Ci)) instead of [q2CiBr(q) (or [q2CiSr(q)), for a connected seg-

ment Ci.

2.2 Degenerate Conic Sections Embedded in a Torus

In this subsection, we show that conic sections that can be embedded in a torus must

be circles. Since conic sections are planar curves, each conic section embedded in a

torus must be in the intersection of the torus with a plane. Therefore, we show that

all conic sections in the Torus/Plane Intersection (TPI) curves must be circles. We

8



e1; e2; e3 2 S
2

standard unit vectors: e1 = (1; 0; 0); e2 = (0; 1; 0); e3 = (0; 0; 1)

p;q 2 IR
3

3D points

N 2 S
2

unit vector

Np;Nq 2 S
2

unit vectors with tails at p and q, respectively

L(p;N) the plane that contains p and is normal to N

l
+
(p;N) in�nite half-line: f p+ tN 2 IR

3
j t � 0 g

l(p;N) in�nite line: f p+ tN 2 IR
3
j t 2 IR g

B�(p) the ball with center p and radius �: f q 2 IR
3
j jjq� pjj � � g

S�(p) the sphere with center p and radius �: f q 2 IR
3
j jjq� pjj = � g

Cd(p;N) the circle with radius d and center p, and contained in the plane

L(p;N)

Y�(p;N) the cylinder with radius � and axis l(p;N)

K�(p;N) the cone with vertex p and the unit direction vector N, and half

angle �

Kr;�(p;N) the cone which is an envelope surface of moving ball along cen-

ter trajectory l(t) = p + tN (t � 0) with radius function

jr + jjl(t)jj sin �j

Tr;R(p;N) the torus with minor radius r, major radius R, center p, and main

circle CR(p;N)

Table 2.1: Notations for geometric primitives.
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show that, if the TPI curve is factorized into two conic sections, each conic section

must be a circle.

Let's assume that a torus T intersects with a plane L. By applying translation

and rotation if necessary, we may assume that the torus T is given in a standard

position and its main circle is contained in the xy-plane: T = Tr;R(0; e3), where

r > 0, R > 0, 0 = (0; 0; 0), and e3 = (0; 0; 1). Note that the given plane L must be

one of the following three types:

z = b,

y = b,

z = ay + b, (a 6= 0).

For each of above cases, we classify the conic sections in the TPI curve.

2.2.1 The Case of L : z = b

In this case, the plane L is parallel to the xy-plane. Thus, if T and L intersect, the

TPI curve is composed of one or two pro�le circles.

2.2.2 The Case of L : y = b

An implicit surface equation of the torus T is given as follows:

(x2 + y
2 + z

2 +R
2 � r

2)2 � 4R2(x2 + y
2) = 0:

The intersection curve between T and L : y = b is represented as:

(x2 + z
2 + b

2 +R
2 � r

2)2 � 4R2(x2 + b
2) = 0;

and equivalently:

x
4 + 2x2z2 + z

4 + 2(b2 � r
2 �R

2)x2 + 2(b2 � r
2 +R

2)z2

+(b2 � r
2 +R

2)2 � 4b2R2 = 0: (2.1)

If the intersection curve between T and L includes one or two conic sections, Equa-

tion (2.1) is factorized as follows:

(Ax2 +Bz
2 +Cxz +Dx+Ez + F )(Gx2 +Hz

2 + Ixz + Jx+Kz +M) = 0: (2.2)

10



By multiplying each term by a constant if necessary, we may assume that A = G = 1:

(x2 +Bz
2 + Cxz +Dx+Ez + F )(x2 +Hz

2 + Ixz + Jx+Kz +M) = 0: (2.3)

Equation (2.3) is expanded as follows:

x
4 + (C + I)x3z + (B + CI +H)x2z2 + (BI + CH)xz3 +BHz

4 + � � � = 0:

(2.4)

Comparing Equations (2.1) and (2.4), we obtain the following results:

B;H 6= 0,

from x
3
z term : C + I = 0, I = �C,

from z
4 term : BH = 1, H =

1

B

,

from x
2
z
2 term : CI +B +H = 2, C

2 =
(B�1)2

B
,

from xz
3 term : CH +BI = 0, C(H �B) = C

1�B2

B
= 0.

From the relation C
1�B2

B
= 0, we have: C = 0 or B = �1.

Let's consider three cases: C = 0, B = 1, and B = �1.

� If C = 0, then C
2 =

(B�1)2
B

= 0; thus B = 1.

� If B = 1, then C
2 =

(B�1)2
B

= 0; thus C = 0.

� If B = �1, then C
2 =

(B�1)2
B

= �4, which is impossible.

Thus, we have

B = 1; C = 0; H = 1; and I = 0:

Equation (2.3) is reformulated as:

(x2 + z
2 +Dx+Ez + F )(x2 + z

2 + Jx+Kz +M) = 0; (2.5)

and equivalently:

x
4 + 2x2z2 + z

4 + (D + J)x3 + (E +K)x2z + (D + J)xz2 + (E +K)z3

+(DJ + F +M)x2 + (DK +EJ)xz + (EK + F +M)z2

+(DM + FJ)x+ (EM + FK)z + FM = 0:

(2.6)

11



Comparing x3 and x
2
z terms of Equation (2.1) and (2.6), we obtain that:

D + J = 0; J = �D;
E +K = 0; K = �E:

Thus, Equation (2.5) is reformulated as follows:

(x2 + z
2 +Dx+Ez + F )(x2 + z

2 �Dx�Ez +M) = 0; (2.7)

and equivalently:

x
4 + 2x2z2 + z

4 + (F �D
2 +M)x2 + (F �E

2 +M)z2 � 2DExz

+D(M � F )x+E(M � F )z + FM = 0:
(2.8)

Comparing xz term of Equations (2.1) and (2.8), we obtain:

DE = 0;

thus, D = 0 or E = 0.

Claim 2.2.1 E = 0:

Proof: Suppose E 6= 0. Then we must have D = 0. The di�erence between the

z
2 and x

2 terms in Equations (2.1) and (2.8) is

2(b2 � r
2 +R

2)� 2(b2 � r
2 �R

2) = 4R2
;

(F �E
2 +M)� (F �D

2 +M) = D
2 �E

2
: (2.9)

We derive that D2 �E
2 = �E2 = 4R2

> 0. This is a contradiction. ut

From Equation (2.9) and the fact E = 0, we have

D
2 �E

2 = D
2 = 4R2

;

thus D = �2R.
Comparing the x terms of Equations (2.1) and (2.8), we obtain the following

relation

D(M � F ) = 0;

�2R(M � F ) = 0;

M = F:

(2.10)
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Comparing the x2 terms of Equations (2.1) and (2.8), we have

2F �D
2 = 2F � 4R2 = 2(b2 � r

2 �R
2);

F = b
2 � r

2 +R
2
: (2.11)

Equation (2.7) is reformulated as follows:

(x2 + z
2 + 2Rx+ F )(x2 + z

2 � 2Rx+ F ) = 0;

((x+R)2 + z
2 + F �R

2)((x �R)2 + z
2 + F �R

2) = 0;

((x+R)2 + z
2 + b

2 � r
2)((x�R)2 + z

2 + b
2 � r

2) = 0;

(2.12)

and equivalently:

x
4+2x2z2+ z

4+2(b2� r
2�R

2)x2+2(b2� r
2+R

2)z2+(b2� r
2+R

2)2 = 0: (2.13)

Comparing the constant term of Equations (2.1) and (2.13),

(b2 � r
2 +R

2)2 = (b2 � r
2 +R

2)2 � 4b2R2
;

4b2R2 = 0;

b = 0:

(2.14)

Equation (2.12) is reformulated as follows:

((x+R)2 + z
2 � r

2)((x �R)2 + z
2 � r

2) = 0: (2.15)

When given plane L is y = b, T and L intersect in conic sections if and only if

b = 0. In the intersection curve between T and L, the conic sections are composed

of two circles on xz-plane, whose radii are r and centered at (R; 0; 0) and (�R; 0; 0),
respectively.

2.2.3 The Case of L : z = ay + b; (a 6= 0)

The implicit surface equation of T is as follows:

(x2 + y
2 + z

2 +R
2 � r

2)2 � 4R2(x2 + y
2) = 0:

We may represent L as a parametric form: p + sv1 + tv2, where p = (0; 0; b),

v1 = (1; 0; 0), and v2 =

�
0;

1p
1 + a

2
;

ap
1 + a

2

�
. The xyz-values of an arbitrary
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point on the plane L are represented as st-values as follows:

x = px + sv1x + tv2x = s;

y = py + sv1y + tv2y =
tp

1 + a
2
;

z = pz + sv1z + tv2z =
atp
1 + a

2
+ b;

(2.16)

where v1 = (v1x; v1y; v1z) and v2 = (v2x; v2y; v2z). By substituting xyz-values of

Equation (2.16) for xyz-values of the implicit surface equation of T , we obtain the

TPI curve on L as follows:�
s
2 + t

2 +
2abp
1 + a

2
t+ b

2 � r
2 +R

2

�2

� 4R2

 
s
2 +

t
2

1 + a
2

!
= 0: (2.17)

and equivalently:

s
4 + 2s2t2 + t

4 +
4abp
1 + a

2
s
2
t+

4abp
1 + a

2
t
3 + 2(b2 � r

2 �R
2)s2

+

"
2(b2 � r

2 +R
2) +

4(a2b2 �R
2)

1 + a
2

#
t
2 +

4ab(b2 � r
2 +R

2)p
1 + a

2
t+ (b2 � r

2 +R
2)2 = 0:

(2.18)

If the TPI curve includes conic sections, then Equation (2.18) is factorized as

follows:

(As2 +Bt
2 + Cst+Ds+Et+ F )(Gs2 +Ht

2 + Ist+ Js+Kt+M) = 0: (2.19)

Comparing s4, s3t, t4, s2t2, st3, and s
3 terms of Equations (2.18) and (2.19), under

the same derivation in Section 2.2.2, we obtain that

A = 1; B = 1; C = 0; G = 1; H = 1; I = 0; and J = �D:

Equation (2.19) is reformulated as:

(s2 + t
2 +Ds+Et+ F )(s2 + t

2 �Ds+Kt+M) = 0; (2.20)

and equivalently:

s
4 + 2s2t2 + t

4 + (E +K)s2t+ (E +K)t3 + (F �D
2 +M)s2

+D(K �E)st+ (EK + F +M)t2 +D(M � F )s+ (EM + FK)t+ FM = 0:

(2.21)
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Comparing st and s terms of Equations (2.18) and (2.21), we obtain:

D(K �E) = 0;

D(M � F ) = 0:
(2.22)

Claim 2.2.2 D 6= 0:

Proof: Suppose that D = 0. Equation (2.21) is reformulated as follows:

s
4 + 2s2t2 + t

4 + (E +K)s2t+ (E +K)t3 + (F +M)s2

+(EK + F +M)t2 + (EM + FK)t+ FM = 0:
(2.23)

Comparing s2t, s2, and t
2 terms of Equations (2.18) and (2.23), we have

E +K =
4abp
1 + a

2
; (2.24)

F +M = 2(b2 � r
2 �R

2); (2.25)

EK + F +M = 2(b2 � r
2 +R

2) +
4(a2b2 �R

2)

1 + a
2

: (2.26)

Then we have

EK = (EK + F +M)� (F +M)

= 4R2 +
4(a2b2 �R

2)

1 + a
2

=
4a2(R2 + b

2)

1 + a
2

;

(2.27)

and

(E �K)2 = (E +K)2 � 4EK;

=
16a2b2

1 + a
2
� 16a2(R2 + b

2)

1 + a
2

;

= �16a2R2

1 + a
2
< 0;

(2.28)

which is impossible. Therefore, we must have D 6= 0. ut

From Equation (2.22) and the fact that D 6= 0, we have

K = E; and M = F:

Equation (2.20) is reformulated as follows:

(s2 + t
2 +Ds+Et+ F )(s2 + t

2 �Ds+Et+ F ) = 0; (2.29)
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and equivalently:

s
4 + 2s2t2 + t

4 + 2Es2t+ 2Et3 + (2F �D
2)s2 + (2F +E

2)t2 + 2EFt+ F
2 = 0:

(2.30)

Comparing s2t, s2, t2, t, and constant terms of Equations (2.18) and (2.30),

2E =
4abp
1 + a

2
; (2.31)

2F �D
2 = 2(b2 � r

2 �R
2); (2.32)

2F +E
2 = 2(b2 � r

2 +R
2) +

4(a2b2 �R
2)

1 + a
2

; (2.33)

2EF =
4ab(b2 � r

2 +R
2)p

1 + a
2

; (2.34)

F
2 = (b2 � r

2 +R
2)2: (2.35)

Claim 2.2.3 b = 0:

Proof: Assume b 6= 0. Since we know that a 6= 0, from Equations (2.31) and

(2.34),

2E =
4abp
1 + a

2
6= 0;

F =
2EF

2E
= b

2 � r
2 +R

2
:

From Equations (2.31) and (2.33),

2F +E
2 = 2(b2 � r

2 +R
2) +

4a2b2

1 + a
2

= 2(b2 � r
2 +R

2) +
4(a2b2 �R

2)

1 + a
2

;

�4R2

1 + a
2
= 0;

(2.36)

which is impossible. Thus, we must have b = 0. ut

In the proof of Claim 2.2.3, we know that F 6= b
2 � r

2 + R
2. Thus, from

Equation (2.35) and the fact b = 0 we obtain

F = �(b2 � r
2 +R

2) = r
2 �R

2
:
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From Equation (2.32) and the facts b = 0 and F = r
2 �R

2,

D = �2r:

From Equation (2.31) and the fact b = 0, we obtain

E = 0:

From Equation (2.33), we obtain:

2(r2 �R
2) = R

2 � r
2 � 4R2

1 + a
2
;

a = � rp
R
2 � r

2
;

where R > r > 0.

Equation (2.29) is reformulated as:

(s2 + t
2 + 2rs+ r

2 �R
2)(s2 + t

2 � 2rs+ r
2 �R

2) = 0;

((s+ r)2 + t
2 �R

2)((s� r)2 + t
2 �R

2) = 0:
(2.37)

When L has the form z = ay + b, where a 6= 0, the TPI curve includes conic

sections if and only if the case of

a = � rp
R
2 � r

2
;

b = 0;

where R > r > 0.

2.2.4 Classi�cation of the Conic Sections on a Torus

The only conic section which can be embedded in a torus T = Tr;R(p;N) is a circle,

and the circle belongs to one of the following classes:

� pro�le circles of T

� cross sectional circles of T

� Yvone-Villarceau circles of T
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Chapter 3

Conic Sections in Torus and

Simple Surface Intersections

In this chapter, we present e�cient and robust geometric algorithms that can detect

and compute all conic sections in Torus/Plane Intersection (TPI), Torus/natural-

Quadric Intersection (TQI), and Torus/Torus Intersection (TTI). These algorithms

are based on a simple classi�cation of all conic sections that can be embedded in a

torus. That is, they must be circles of special types: (i) pro�le circles, (ii) cross-

sectional circles, and (iii) Yvone-Villarceau circles. Based on this classi�cation, we

formulate all necessary and su�cient conditions (except one condition in the torus-

cone case and one in the torus-torus case) in algebraic and semi-algebraic constraints.

Let �T and �Q denote the sets of all circles that can be embedded in a torus T

and a natural-quadric Q, respectively. The two surfaces T and Q intersect in circles

if and only if the two sets �T and �Q of circles have a non-empty intersection:

�T \ �Q 6= ;; that is, there are some circles that can be embedded in T and Q

simultaneously.

In Section 3.1, we will show that the set �T can be decomposed into �ve disjoint

subsets: �iT (i = 1; : : : ; 5), each of which is given as a one-parameter family of circles.

Let C(t) 2 �iT be a one-parameter family of circles that are embedded in the torus T

with their centers at p(t), radius r(t), and each contained in the plane with normal

N(t). Using the circle information: p(t); r(t); N(t), we can derive the conditions for

some circles C(t) to be embedded in Q (i.e., C(t) 2 �Q).

The rest of this chapter is organized as follows. Sections 3.1 and 3.2 classify
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all circles that can be embedded in a torus, sphere, cylinder, and cone. Based on

this classi�cation, Sections 3.3{3.7 present geometric algorithms that can detect and

compute all conic sections in the torus/plane, torus/natural-quadric, and torus/torus

intersection curves.

3.1 Circles on a Torus

Conic sections embedded in a torus must be circles of special types (see Figure 3.1):

(i) pro�le circles, (ii) cross-sectional circles, and (iii) Yvone-Villarceau circles. This

classi�cation is a well-known result in classical geometry [22]. In Section 2.2, we

proved this fact based on deriving elementary formulae. We present illustrative

examples of these special types of circles.

(a) Pro�le circles (b) Cross-sectional circles (c) Yvone-Villarceau circles

Figure 3.1: Circles on a torus.

3.1.1 Pro�le Circles

For the sake of simplicity, we assume that the torus is given in a standard form

Tr;R((0; 0; 0); e3) (see Figure 2.1 in Section 2.1):

(x2 + y
2 + z

2 +R
2 � r

2)2 � 4R2(x2 + y
2) = 0;

where r and R are the minor and major radii of the torus. Note that the torus can

be constructed by rotating the circle Cr((R; 0; 0); e2) about the z-axis. Thus, it can

be represented in a parametric form using two angular parameters � and �:

((R+ r cos �) cos�; (R + r cos �) sin�; r sin �):
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Each pro�le circle is obtained by the rotational sweep of a point on the circle

Cr((R; 0; 0); e2) about the z-axis. Two concentric pro�le circles are obtained by

intersecting the torus with a plane parallel to the xy-plane (see Figure 3.2(a)). The

set of centers of pro�le circles forms a line segment on the z-axis:




p
T = f(0; 0; z0) j � r � z0 � rg:

To each center point (0; 0; z0) 2 


p
T , there correspond two pro�les circles of radii:

R �
q
r
2 � z

2
0 , both of which are contained in the plane z = z0. Therefore, the set

of all pro�les circles of T is given as follows:

�
p
T = fC

R�
p
r2�z2

0

((0; 0; z0); e3) j � r � z0 � rg:
The set �

p
T can be represented as a disjoint union of the following two sets of circles,

each of which is a one-parameter family of circles:

�
p;�
T = fC

R�
p
r2�z2

0

((0; 0; z0); e3) j � r � z0 < rg;
�
p;+
T = fC

R+
p
r2�z2

0

((0; 0; z0); e3) j � r < z0 � rg:

The sets of centers of circles contained in �
p;�
T and �

p;+
T are given as follows:




p;�
T = f(0; 0; z0) j � r � z0 < rg;



p;+
T = f(0; 0; z0) j � r < z0 � rg:

3.1.2 Cross-Sectional Circles

Each cross-sectional circle is obtained by rotating the circle Cr((R; 0; 0); e2) by an

angle �0 about the z-axis:

Cr((R cos�0; R sin�0; 0); (� sin�0; cos �0; 0))

= f((R + r cos �) cos�0; (R + r cos �) sin�0; r sin �)j0 � � < 2�g:
The set of all cross-sectional circles is:

�cT = fCr((R cos�0; R sin�0; 0); (� sin�0; cos�0; 0))j 0 � �0 < 2�g:
The set of centers of cross-sectional circles is the same as the major circle of the

torus T :



c
T = f(R cos�0; R sin�0; 0) j 0 � �0 < 2�g = CR((0; 0; 0); e3):

Two coplanar cross-sectional circles are obtained by intersecting the torus with a

plane containing the z-axis (see Figure 3.2(b)).
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3.1.3 Yvone-Villarceau Circles

When the major radius R is larger than the minor radius r, the plane L0 de�ned by

an implicit equation:

rx+
�p

R
2 � r

2
�
z = 0

intersects with the torus T in two circles called Yvone-Villarceau circles (see Fig-

ure 3.2(c)).

The plane L0 has a unit normal vector: 
r

R

; 0;

p
R
2 � r

2

R

!
:

The torus T and the plane L0 intersect tangentially at two points: 
�R

2 � r
2

R

; 0;� r

R

p
R
2 � r

2

!
;

which are also the intersection points of two Yvone-Villarceau circles contained in

the plane L0. The whole y-axis (x = z = 0) is contained in the plane L0. When we

intersect the y-axis: f(0; t; 0) j t 2 IRg with the torus T , we get the following four

solutions of t:

(t2 +R
2 � r

2)2 � 4R2
t
2 = 0;

(t2 +R
2 � r

2)� 2Rt = 0;

(t�R)2 � r
2 = 0;

t = �R� r

Based on these four values of t and the relative con�guration of two Yvone-

Villarceau circles on the plane L0, we can easily tell that the points (0;�R�r; 0) and
(0; R� r; 0) are two extreme points (along the y-direction) of one Yvone-Villarceau

circle. This circle has center (0;�r; 0) and radius R. Moreover, the two extreme

points of the circle along the x-direction are given as follows:�
�
p
R
2 � r

2
;�r;�r

�
:

Similarly, the points (0;�R + r; 0) and (0; R + r; 0) are two extreme points of the

other Yvone-Villarceau circle with center (0; r; 0) and radius R. The two extreme

points along the x-direction are given as follows:�
�
p
R
2 � r

2
; r;�r

�
:
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When we rotate the plane L0 by angle �0 around the z-axis while maintaining

the same slope with the xy-plane, we obtain a plane L�0 with a unit normal vector: 
r

R

cos�0;
r

R

sin�0;

p
R
2 � r

2

R

!
:

Therefore, the plane L�0 has an implicit equation:

(r cos�0)x+ (r sin�0)y +
�p

R
2 � r

2
�
z = 0:

This plane L�0 also intersects with the torus T in two Yvone-Villarceau circles of

radius R. The center of one Yvone-Villarceau circle is obtained by rotating (0;�r; 0)
by angle �0 in the xy-plane:

(r sin�0;�r cos�0; 0):

The center of the other Yvone-Villarceau circle is obtained by rotating (0; r; 0):

(�r sin�0; r cos�0; 0):

As we rotate the plane L�0 , the center of one Yvone-Villarceau circle traces out a

circle of radius r:




Y V;�
T = f(r sin�0;�r cos�0; 0) j 0 � �0 < 2�g:

The center of the other Yvone-Villarceau circle traces out another circle of radius r:




Y V;+
T = f(�r sin�0; r cos�0; 0) j 0 � �0 < 2�g:

The corresponding sets of Yvone-Villarceau circles of T are given as follows:

�
Y V;�
T = fCR((rs�0 ;�rc�0 ; 0); (ac�0 ; as�0 ;

p
1� a

2))j 0 � �0 < 2�g;
�
Y V;+
T = fCR((�rs�0 ; rc�0 ; 0); (ac�0 ; as�0 ;

p
1� a

2))j 0 � �0 < 2�g;

where c�0 = cos�0, s�0 = sin�0, and a = r=R.

3.2 Circles on Natural Quadrics

In this section, we classify all circles that can be embedded in natural quadrics. By

comparing these circles with those embedded in a torus, we can detect and compute

all conic sections (i.e., circles) in the intersection curve of a torus and a natural

quadric.
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(a) Pro�le circles in TPI
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(b) Cross-sectional circles in TPI

Figure 3.2: Circles in TPI.
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p
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p
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p
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R

p
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(c) Yvone-Villarceau circles in TPI

Figure 3.2: (cont.)
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Figure 3.3: Circles on a natural quadric.
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3.2.1 Circles on a Sphere

For a sphere S = S�(p) with center p and radius �, any point in the ball B�(p) can

be the center of a circle embedded in the sphere S. Thus, we have


S = B�(p):

To each point q 2 B�(p), there corresponds a unique circle with center q and

embedded in the sphere S�(p). The circle has radius
p
�
2 � kq� pk2. It is also

contained in the plane L(q;Nq), where Nq =
q�p
kq�pk (see Figure 3.3(a)). Therefore,

the set �S of all circles embedded in the sphere S can be represented as follows:

�S =

�
Cd(q;Nq) j d =

q
�
2 � kq� pk2; q 2 B�(p); and Nq =

q� p

kq� pk
�
: (3.1)

3.2.2 Circles on a Cylinder

For a cylinder Y = Y�(p;N), the centers of all circles embedded in the cylinder Y

generate an in�nite line:


Y = l(p;N):

The circles embedded in the cylinder Y form a one-parameter family of circles (see

Figure 3.3(b)):

�Y = fC�(q;N) j q 2 l(p;N) g: (3.2)

3.2.3 Circles on a Cone

For a cone K = K�(p;N), the centers of all circles embedded in the cone K generate

an in�nite half-line:


K = l
+(p;N):

The circles embedded in the cone K form a one-parameter family of circles (see

Figure 3.3(c)):

�K = fCd(q;N) j q 2 l
+(p;N)and d = kq� pk tan � g: (3.3)
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3.3 Circle Detection in TPI

Circles in a torus/plane intersection curve must be of the following special types: (i)

pro�le circles, (ii) cross-sectional circles, and (iii) Yvone-Villarceau circles. Given a

torus T = Tr;R(p1;N1) and a plane L = L(p2;N2), we present geometric algorithms

that detect and compute the circles of these special types in the TPI curve.

3.3.1 Pro�le Circles in TPI

The torus T intersects with the plane L in pro�le circles if and only if

1. The plane L is orthogonal to the main axis l(p1;N1) of T (i.e., N1 and N2

are parallel or opposite to):

N1 �N2 = 0:

2. The distance between two planes L(p1;N1) and L(p2;N2) is less than or equal

to r:

hp2 � p1;N1i2 � r
2
:

When the above two conditions are satis�ed, the two pro�le circles are given as

follows:

CR��(q;N1);

where

� =

q
r
2 � hp2 � p1;N1i2

q = p1 + hp2 � p1;N1iN1:

When � = 0 (i.e., the signed distance hp2 � p1;N1i between L(p1;N1) and L(p2;N2)

is equal to �r), the two pro�le circles overlap in an identical circle of radius R.

3.3.2 Cross-Sectional Circles in TPI

The torus T intersects with the plane L in cross-sectional circles if and only if the

plane L contains the main axis l(p1;N1) of T ; namely, N1 and N2 are orthogonal

and the plane L contains the central point p1 of T :

hN1;N2i = 0; and hp1 � p2;N2i = 0:
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The two cross-sectional circles are given as follows:

Cr(p1 �R(N1 �N2);N2):

3.3.3 Yvone-Villarceau Circles in TPI

The torus T intersects with the plane L in Yvone-Villarceau circles if and only if

the plane L has two tangential intersection points with T ; namely, the plane L

contains the central point p1 of T and the two normals N1 and N2 make angle

� = arcsin(r=R):

hp1 � p2;N2i = 0;

hN1;N2i2 = cos2 � = 1� r
2

R
2
:

The two Yvone-Villarceau circles are given as follows:

CR

�
p1 � r

sin �
(N1 �N2);N2

�
= CR (p1 �R(N1 �N2);N2) :

Note that the vector 1
sin �

(N1�N2) is a unit vector orthogonal to both N1 and N2.

3.4 Pro�le Circles in TQI

Given a torus T = Tr;R(p1;N1) and a natural quadric Q (= S�(p2), Y�(p2;N2), or

K�(p2;N2)), we present geometric algorithms that detect and compute all pro�le

circles in the TQI curve. We consider the set of all pro�le circles embedded in the

torus T = Tr;R(p1;N1):

�
p
T = fC

R�
p
r2��2(p1 + �N1;N1) j � r � � � r g: (3.4)

3.4.1 Pro�le Circles in TSI

Assume that a pro�le circle C 2 �
p
T is also embedded in the sphere S = S�(p2) (i.e.,

C 2 �
p
T \ �S). The set �S of circles given in Equation (3.1) can be reformulated as

follows:

�S =

�
Cd(q;Nq) j d =

q
�
2 � kq� p2k2; q 2 B�(p2); and Nq =

q� p2

kq� p2k
�
:(3.5)
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Comparing the two sets �
p
T and �S in Equations (3.4){(3.5), we derive the following

relations:

Nq = �N1 (3.6)

p1 + �N1 = p2 + �N1 (3.7)

R�
p
r
2 � �

2 =
q
�
2 � �

2
; (3.8)

for some � and � such that �r � � � r and �� � � � �.

Equation (3.7) implies that

k = �� � = h(�� �)N1;N1i = hp2 � p1;N1i

is a �xed constant which represents the signed distance from p1 to p2 along the

direction of N1. Substituting � = �� k into Equation (3.8), we obtain

R�
p
r
2 � �

2 =
q
�
2 � (�� k)2: (3.9)

Figure 3.4 shows that the solution of this equation is given as the intersection of a

circle of radius r and a half circle of radius �. In fact, the torus T and the sphere

S are obtained by rotating the circle and the half circle of Figure 3.4(b) about the

�-axis. Figure 3.4(b) shows the cross-sectional circles of T and S which are obtained

by intersecting T and S with a plane containing the in�nite line l(p1;N1). Note

that the circles C� and C
+
r (or C�

r ) in Figure 3.4(b) intersect if and only ifp
k
2 +R

2 � r � � �
p
k
2 +R

2 + r:

Consequently, necessary and su�cient conditions for the torus T and the sphere

S to intersect in pro�le circles are:

N1 �Nq = 0 (3.10)

kp1 � p2k2 = hp1 � p2;N1i2 (3.11)

(� � r)2 � k
2+ R

2 � (� + r)2: (3.12)

When these three conditions are met, the TSI circles are constructed as follows:

C
R�

p
r2��2(p1 + �N1;N1);

where

� =
�B �

p
B

2 � 4AC

2A
;

29



and

A = k
2 +R

2
;

B = k (�2 � k
2 � r

2 �R
2);

C = (k2 � �
2)r2 +

1

4
(R2 � �

2 + k
2 � r

2)2:

r

R

q

p1

p2
�

C�
+

C
+
rC

�

r

q

N1

C�
�

�� axis

(a) (b)

Figure 3.4: Pro�le circles in TSI.

3.4.2 Pro�le Circles in TYI

Assume that a pro�le circle C 2 �
p
T is also embedded in the cylinder Y = Y�(p2;N2)

(i.e., C 2 �
p
T \�Y ). The set �Y of circles given in Equation (3.2) can be reformulated

as follows:

�Y = fC�(p2 + �N2;N2) j � 2 IR g: (3.13)

Comparing the two sets �
p
T and �Y in Equations (3.4) and (3.13), we can derive the

following relations:

N2 = �N1 (3.14)

p1 + �N1 = p2 + �N1 (3.15)

R�
p
r
2 � �

2 = �; (3.16)
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for some � and � such that �r � � � r and �1 � � � 1.

The right-hand side of Equation (3.16) is a constant function of �. Figure 3.5(b)

shows that there are solutions of � for Equation (3.16) if and only ifR�r � � � R+r.

Moreover, the corresponding values of � are given as follows:

� = �
q
r
2 � (R � �)2:

The torus T and the cylinder Y are obtained by rotating the circle and the line

of Figure 3.5 about the �-axis. Figure 3.5(b) shows the cross-sectional circles of T

and the pro�le lines of Y which are obtained by intersecting T and Y with a plane

containing the in�nite line l(p1;N1).

Necessary and su�cient conditions for the torus T and the cylinder Y to intersect

in pro�le circles are:

N1 �N2 = 0 (3.17)

kp1 � p2k2 = hp1 � p2;N1i2 (3.18)

R� r � � � R+ r: (3.19)

When these three conditions are met, the TYI circles are constructed as follows:

C�(p1 �
q
r
2 � (R� �)2N1;N1):

3.4.3 Pro�le Circles in TKI

Assume that a pro�le circle C 2 �
p
T is also embedded in the cone K = K�(p2;N2)

(i.e., C 2 �
p
T\�K). The set �K of circles given in Equation (3.3) can be reformulated

as follows:

�K = fC� tan �(p2 + �N2;N2) j � � 0g: (3.20)

Comparing the two sets �
p
T and �K in Equations (3.4) and (3.20), we can derive the

following relations:

N2 = �N1 (3.21)

p1 + �N1 = p2 + �N1 (3.22)

R�
p
r
2 � �

2 = � tan �; (3.23)
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Figure 3.5: Pro�le circles in TYI.

for some � and � such that �r � � � r and � � 0.

Let �k = hp1 � p2;N2i be the signed distance from p2 to p1 along the direction

of N2. Figure 3.6 shows that there are solutions of � for Equation (3.23) if and only

if

arctan(R=�k)� arcsin

�
rp

R
2 + �

k
2

�
� � � arctan(R=�k) + arcsin

�
rp

R
2 + �

k
2

�
:(3.24)

The torus T and the cone K are obtained by rotating the circle and the line

of Figure 3.6(b) about the �-axis. Figure 3.6(b) shows the cross-sectional circles

of T and the pro�le lines of K which are obtained by intersecting T and Y with a

plane containing the in�nite line l(p1;N1). Note that the pro�le lines of the cone K

consist of two half-in�nite lines, each of which makes angle � with the half-in�nite

line l+(p1;N1).

Necessary and su�cient conditions for the torus T and the cone K to intersect

in pro�le circles are:

N1 �N2 = 0 (3.25)

kp1 � p2k2 = hp1 � p2;N1i2 ; (3.26)
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and the constraint given in Equation (3.24). When these three conditions are met,

the TKI circles are constructed as follows:

C(���k) tan �(p1 + �N1;N1);

where �r � � � r and the value of � is given as follows:

� =
�B �p

B
2 �AC

A

;

and

A = 1 + tan2 �

B =

8<
: tan � (�k tan � �R); if � = �+ �

k;

� tan � (�k tan � +R); if � = �� �
k

C =

8<
:

�
k tan � (�k tan � � 2R) +R

2 � r
2
; if � = �+ �

k;

�
k tan � (�k tan � + 2R) +R

2 � r
2
; if � = �� �

k:

q

r

R

�

p1

N1

p2

�� axis

N2

�

�k

�

l
+

Cr

+

(a) (b)

Figure 3.6: Pro�le circles in TKI.
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3.5 Cross-Sectional Circles in TQI

We consider the set of all cross-sectional circles embedded in the torus T = Tr;R(p1;N1):

�cT = fCr(q;Nq) j q 2 CR(p1;N1) and Nq =
N1 � (q� p1)

kN1 � (q� p1)k
g: (3.27)

Note that Nq is a unit tangent vector of the main circle CR(p1;N1) of T at q.

3.5.1 Cross-Sectional Circles in TSI

Assume that a cross-sectional circle C 2 �cT is also embedded in the sphere S =

S�(p2) (i.e., C 2 �cT \ �S). The set �S of circles given in Equation (3.1) can be

reformulated as follows:

�S =

�
Cd(q; �Nq) j d =

q
�
2 � kq� p2k2; q 2 B�(p2); and �Nq =

q� p2

kq� p2k
�
:(3.28)

Comparing Nq and �Nq in Equations (3.27){(3.28), we can notice that the vector

q� p2 is orthogonal to both N1 and q� p1:

hq� p2;N1i = 0 and hq� p2;q� p1i = 0: (3.29)

Since hq� p1;N1i = 0, we have q = p1 + v, for some v such that hv;N1i = 0 and

kvk = R. Therefore, Equation (3.29) can be reformulated as follows:

hp1 � p2;N1i = 0 and hq� p2;q� p1i = 0: (3.30)

Therefore, the point p2 (i.e., the center of the sphere S = S�(p2)) must be contained

in the plane L(p1;N1). Moreover, the point p2 must be in the tangent line of the

circle CR(p1;N1) at the point q. There are one or two such points q 2 CR(p1;N1)

if and only if p2 2 L(p1;N1) and kp2 � p1k � R.

Note that (see Figure 3.7(b)):

kq� p2k2 = kp1 � p2k2 �R
2
:

Comparing the radii of the circles in Equations (3.27){(3.28), we have

r
2 = �

2 � kq� p2k2 (3.31)

r
2 = �

2 � kp2 � p1k2 +R
2 (3.32)

kp2 � p1k2 = R
2 + �

2 � r
2
: (3.33)
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In the last condition, note that kp2 � p1k � R if and only if � � r.

Necessary and su�cient conditions for the torus T and the sphere S to intersect

in cross-sectional circles are:

� � r (3.34)

hp1 � p2;N1i = 0 (3.35)

kp2 � p1k2 = R
2 + �

2 � r
2
: (3.36)

When these three conditions are met, the TSI circles are constructed as follows:

Cr(q;Nq);

where

q = p1 +
R
2

p
R
2 + �

2 � r
2

p2 � p1

kp2 � p1k �
R

p
�
2 � r

2

p
R
2 + �

2 � r
2

N1 � (p2 � p1)

kp2 � p1k :

p1
p2

r

R

�

q

q

(a) (b)

Figure 3.7: Cross-sectional circles in TSI.

3.5.2 Cross-Sectional Circles in TYI

Assume that a cross-sectional circle C 2 �cT is also embedded in the cylinder Y =

Y�(p2;N2) (i.e., C 2 �cT \�Y ). The set �Y of circles given in Equation (3.2) can be

35



reformulated as follows:

�Y = fC�(p2 + �N2;N2) j � 2 IR g: (3.37)

Necessary and su�cient conditions for the torus T and the cylinder Y to intersect

in cross-sectional circles are:

� = r (3.38)

hN1;N2i = 0 (3.39)

hp1 � p2;N1i = 0 (3.40)

kp2 � p1k2 = hp1 � p2;N2i2 +R
2
: (3.41)

When all these conditions are met, the TYI circles are constructed as follows:

Cr(p2 + hp1 � p2;N2iN2;N2):

p1

p2

� = rR

jhp1 � p2;N2ij

N2

(a) (b)

Figure 3.8: Cross-sectional circles in TYI.

3.5.3 Cross-Sectional Circles in TKI

Assume that a cross-sectional circle C 2 �cT is also embedded in the cone K =

K�(p2;N2) (i.e., C 2 �cT \ �K). The set �K of circles given in Equation (3.3) can
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be reformulated as follows:

�K = fC� tan �(p2 + �N2;N2) j � � 0g: (3.42)

Necessary and su�cient conditions for the torus T and the cone K to intersect

in cross-sectional circles are:

tan � hp1 � p2;N2i = r (3.43)

hN1;N2i = 0 (3.44)

hp1 � p2;N1i = 0 (3.45)

kp2 � p1k2 = hp1 � p2;N2i2 +R
2
: (3.46)

When all these conditions are met, the TYI circles are constructed as follows:

Cr(p2 + hp1 � p2;N2iN2;N2):

p1

p2

� = rR

jhp1 � p2;N2ij

N2

�

(a) (b)

Figure 3.9: Cross-sectional circles in TKI.
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3.6 Yvone-Villarceau Circles in TQI

We consider the set of all Yvone-Villarceau circles embedded in the torus T =

Tr;R(p1;N1):

�
Y V;�
T = fCR(q;Nq) j q 2 Cr(p1;N1) g; (3.47)

where

Nq = � r

R

(q� p1)�N1

kq� p1k +

s
1� r

2

R
2
N1:

Consider the set of lines l(q;Nq):

H

Y V;�
T = [q2Cr(p1;N1)l(q;Nq):

This set generates a ruled surface that forms a hyperboloid of one sheet. When the

main plane of T is contained in the xy-plane, the direction vector N1 is parallel to

the z-axis and the ruled surface is represented in an implicit equation:

x
2 + y

2 � r
2
z
2

R
2 � r

2
= r

2
: (3.48)

Note that both H
Y V;+
T and H

Y V;�
T can be represented using the same implicit equa-

tion.

3.6.1 Yvone-Villarceau Circles in TSI

Given a sphere S = S�(p2) with radius � and center p2, we can test whether this

center belongs to the ruled surface H
Y V;�
T by �rst transforming the point p1 and

the direction vector N1 into the origin and the z-direction, respectively, and then

testing the resulting coordinate of p2 (under transformation) with respect to Equa-

tion (3.48). Since an explicit transformation is quite cumbersome, we compute the

terms x2 + y
2 and z

2 as follows:

z
2 = j hp2 � p1;N1i j2

x
2 + y

2 = jjp2 � hp2 � p1;N1iN1jj2:

Substituting these two expressions into Equation (3.48), we obtain:

jjp2 � hp2 � p1;N1iN1jj2 � r
2

R
2 � r

2
j hp2 � p1;N1i j2 = r

2
: (3.49)
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When the sphere center p2 is contained in the ruled surface H
Y V;�
T , this point

belongs to a line l(q;Nq). The point q 2 Cr(p1;N1) can be computed as follows:

q = p2 + �Nq;

hq� p1;N1i = 0;

hp2 � p1 + �Nq;N1i = 0;

where � is given as follows:

� =
hp1 � p2;N1i
hNq;N1i =

Rp
R
2 � r

2
hp1 � p2;N1i :

Consequently, we have

q = p2 +
R hp1 � p2;N1ip

R
2 � r

2
Nq:

From the condition: q 2 Cr(p1;N1), we have



p2 � p1 +
R hp1 � p2;N1ip

R
2 � r

2
Nq






2

= r
2
: (3.50)

Finally, we have the following constraint on the radius � of the sphere S�(p2):

R
2 +

R
2

R
2 � r

2
hp1 � p2;N1i2 = �

2
: (3.51)

Necessary and su�cient conditions for the intersection curve of T and S to have

degenerate Yvone-Villarceau circles are Equations (3.49){(3.51). The circle itself is

constructed as follows:

CR(q;Nq);

where q and Nq are given as above.

3.6.2 Yvone-Villarceau Circles in TYI

Necessary and su�cient conditions for the torus T and the cylinder Y = Y�(p2) to

intersect in an Yvone-Villarceau circle are:

� = R; (3.52)

and the constraints of Equations (3.49){(3.50). When all these conditions are met,

the TYI circle is constructed as follows:

CR(p2 + hp1 � p2;N2iN2;N2):
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1
p

2
p
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r

p2

N1

p1
r

r

(a) (b)

Figure 3.10: Yvone-Villarceau circles in TSI.

p

p
N

N
2

2

1

1

Figure 3.11: Yvone-Villarceau circle in TYI.

40



3.6.3 Yvone-Villarceau Circles in TKI

Necessary and su�cient conditions for the torus T and the cone K to intersect in

an Yvone-Villarceau circle are:

j hp1 � p2;N2i j tan � = R; (3.53)

and the constraints of Equations (3.49){(3.50). When all these conditions are met,

the TKI circle is constructed as follows:

CR(p2 + hp1 � p2;N2iN2;N2):

p

N

p

N

r

2

2

1

1

Figure 3.12: Yvone-Villarceau circle in TKI.

3.7 Circle Detection in TTI

Given two tori T1 = Tr1;R1
(p1;N1) and T2 = Tr2;R2

(p2;N2), we present geometric

algorithms that detect and compute all degenerate circles in the TTI curve. The

algorithm to detect degenerate circles in �cT1 \ �
p
T2

is essentially the same as that

for �
p
T1
\ �cT2 . Thus, we do not consider the case of �

c
T1
\ �

p
T2
. Similarly, we do not

consider the cases of �Y VT1 \ �
p
T2

and �Y VT1 \ �cT2 .
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3.7.1 Pro�le Circles of T1 and other Circles of T2

We consider the set of all pro�le circles embedded in the torus T1 = Tr1;R1
(p1;N1):

�
p
T1

= fC
R1�

p
r2
1
��2(p1 + �N1;N1) j � r1 � � � r1 g: (3.54)

Pro�le Circles of T2

The set of all pro�le circles embedded in the torus T2 = Tr2;R2
(p2;N2) is given as

follows:

�
p
T2

= fC
R2�

p
r2
2
��2(p2 + �N2;N2) j � r2 � � � r2 g: (3.55)

Comparing the two sets �
p
T1

and �
p
T2

in Equations (3.54) and (3.55), we derive the

following relations:

N1 = �N2 (3.56)

p1 + �N1 = p2 + �N1 (3.57)

R1 �
q
r
2
1 � �

2 = R2 �
q
r
2
2 � �

2
; (3.58)

for some � and � such that �r1 � � � r1 and �r2 � � � r2.

By solving Equations (3.57) and (3.58), the values of � and � are given as follows:

8><
>:

� = � +A

� =
�D �

p
D

2 � 4CE

2C

or

8><
>:

� = � �A

� =
D �

p
D

2 � 4CE

2C
;

where

A = jjp1 � p2jj2

B = (R1 �R2)
2 � (r21 + r

2
2)

C = 4(A2 +B + r
2
1 + r

2
2)

D = 4A(A2 +B + 2r22)

E = B
2 +A

4 + 2BA2 � 4r21r
2
2 + 4r22A

2
:

Figure 3.13(a) shows the case in which T1 and T2 intersect in two pro�le circles.
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Cross-Sectional Circles of T2

We consider the set of all cross-sectional circles embedded in the torus T2 = Tr2;R2

(p2;N2):

�cT2 =

�
Cr2(q;Nq) j q 2 CR2

(p2;N2) and Nq =
N2 � (q� p2)

kN2 � (q� p2)k
�
: (3.59)

Note that Nq is a unit tangent vector of the main circle CR2
(p2;N2) of T2 at q.

Comparing the two sets �
p
T1

and �cT2 in Equations (3.54) and (3.59), we derive

the following relations:

N1 = �Nq (3.60)

p1 + �N1 = q (3.61)

R1 �
q
r
2
1 � �

2 = r2 (3.62)

for some � and q such that �r1 � � � r1 and q 2 CR2
(p2;N2).

By solving Equation (3.62), we derive the value of � as follows:

� = �
q
r
2
1 � (r2 �R1)2:

Thus, from the value of � and Equation (3.61),

q = p1 �
q
r
2
1 � (r2 �R1)2N1:

When q satis�es Equation (3.60), the TTI curve contains a degenerate circle that is

a pro�le circle of T1 as well as a cross-sectional circle of T2. Figure 3.13(b) shows a

pro�le circle of T1 and a cross-sectional circle of T2 that are coincident in the TTI

curve.

Yvone-Villarceau Circles of T2

We consider the set of all Yvone-Villarceau circles embedded in the torus T2 =

Tr2;R2
(p2;N2):

�Y VT2 = fCR2
(q;Nq) j q 2 Cr2(p2;N2) g; (3.63)

where

Nq = � r2

R2

(q� p2)�N2

kq� p2k
+

s
1� r

2
2

R
2
2

N2:
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Comparing the two sets �
p
T1

and �Y VT2 in Equations (3.54) and (3.63), we derive

the following relations:

N1 = �Nq (3.64)

p1 + �N1 = q (3.65)

R1 �
q
r
2
1 � �

2 = R2 (3.66)

for some � and q such that �r1 � � � r1 and q 2 Cr2(p2;N2).

By solving Equation (3.66), we derive the value of � as follows:

� = �
q
r
2
1 � (R2 �R1)2:

Thus, from the value of � and Equation (3.65),

q = p1 �
q
r
2
1 � (R2 �R1)2N1:

When q satis�es Equation (3.64), the TTI curve contains a degenerate circle that

is a pro�le circle of T1 as well as an Yvone-Villarceau circle of T2. Figure 3.13(c)

shows a pro�le circle of T1 and an Yvone-Villarceau circle of T2 that are coincident

in the TTI curve.

3.7.2 Cross-Sectional Circles of T1 and other Circles of T2

We consider the set of all cross-sectional circles embedded in the torus T1 = Tr1;R1

(p1;N1):

�cT1 =

�
Cr1(q1;N1;q1) j q1 2 CR1

(p1;N1); and N1;q1 =
N1 � (q1 � p1)

kN1 � (q1 � p1)k
�
:

(3.67)

Cross-Sectional Circles of T2

We consider the set of all cross-sectional circles embedded in the torus T2 = Tr2;R2

(p2;N2):

�cT2 =

�
Cr2(q2;N2;q2) j q2 2 CR2

(p2;N2); and N2;q2 =
N2 � (q2 � p2)

kN2 � (q2 � p2)k
�
:

(3.68)
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Comparing the two sets �cT1 and �cT2 in Equations (3.67) and (3.68), we derive

the following relations:

N1;q1 = �N2;q2 (3.69)

q1 = q2 (3.70)

r1 = r2 (3.71)

for some q1 and q2 such that q1 2 CR1
(p1;N1) and q2 2 CR2

(p2;N2).

Let q denote the center point of a circle in �cT1 \ �cT2 . The point q is in

CR1
(p1;N1)\CR2

(p2;N2), and N1;q = �N2;q should be satis�ed. The vector N1;q

is parallel with the tangent vector of CR1
(p1;N1) at q, and the vector N2;q is paral-

lel with the tangent vector of CR2
(p2;N2); thus, q is a tangential intersection point

between CR1
(p1;N1) and CR2

(p2;N2). We can compute CR1
(p1;N1)\CR2

(p2;N2)

according to the cases : (i) N1 �N2 6= 0 and (ii) N1 �N2 = 0.

Let Nq be a vector which is identical to N1;q(= �N2;q). When N1�N2 6= 0, if

there is a point q 2 CR1
(p1;N1)\CR2

(p2;N2), l(q;Nq) is a line which is embedded

in the intersection of main planes of two tori T1 and T2; thus Nq is parallel with

N1 � N2. From Equations (3.67) and (3.68), we derive that Nq is orthogonal to

p1 � q and p2 � q. Since Nq is parallel with N1 �N2, and Nq is orthogonal to

p1 � q, q is a point in the set:

fq j q 2 p1 �R1((N1 �N2)�N1)g : (3.72)

Moreover, q is a point on the circle CR2
(p2;N2); thus the following equations should

be satis�ed:

jjp2 � qjj2 = R2
2 (3.73)

hq� p2;N2i = 0 (3.74)

We derive the following condition by replacing q with p1 �R1((N1 �N2)�N1) in

Equation (3.73):

jjp2 � p1 �R1((N1 �N2)�N1)jj2 = R2
2
: (3.75)

When N1 �N2 6= 0, the TTI curve contains a degenerate circle Cr1(q;Nq), where

q = p1�R1((N1�N2)�N1) and Nq =
N1 � (q� p1)

kN1 � (q� p1)k
(that is a cross-sectional
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circle of T1 as well as that of T2) if and only if r1 = r2 and conditions (3.74) and

(3.75) are satis�ed.

WhenN1�N2 = 0, if there is an intersection point q 2 CR1
(p1;N1)\CR2

(p2;N2),

p2 should be on the plane L(p1;N1); thus the following condition is derived:

hp1 � p2;N1i = 0: (3.76)

From Equations (3.67) and (3.68), we derive that Nq is orthogonal to p1 � q and

p2 � q, and q is a point in the set:�
q j q 2 p1 �R1

p2 � p1

jjp2 � p1jj
�
: (3.77)

Moreover, q is a point on the circle CR2
(p2;N2); thus the following equation should

be satis�ed:

jjp2 � qjj2 = R2
2 (3.78)

We derive the following condition by replacing q with p1 � R1
p2 � p1

jjp2 � p1jj in Equa-

tion (3.78):





p2 � p1 �R1
p2 � p1

jjp2 � p1jj




2 = R2

2
: (3.79)

When N1 �N2 = 0, the TTI curve contains a degenerate circle Cr1(q;Nq), where

q = p1 �R1
p2 � p1

jjp2 � p1jj and Nq =
N1 � (q� p1)

kN1 � (q� p1)k (that is a cross-sectional circle

of T1 as well as that of T2) if and only if r1 = r2 and the condition (3.79) is satis�ed.

Figure 3.13(d) shows a cross-sectional circle of T1 and a cross-sectional circle of

T2 that are coincident in the TTI curve.

Yvone-Villarceau Circles of T2

We consider the set of all Yvone-Villarceau circles embedded in the torus T2 =

Tr2;R2
(p2;N2):

�
Y V;�
T2

= fCR2
(q2;N2;q2) j q2 2 Cr2(p2;N2) g; (3.80)

where

N2;q2 = � r2

R2

(q2 � p2)�N2

kq2 � p2k
+

s
1� r

2
2

R
2
2

N2:
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Comparing the two sets �cT1 and �Y VT2 in Equations (3.67) and (3.80), we derive

the following relations:

N1;q1 = �N2;q2 (3.81)

q1 = q2 (3.82)

r1 = R2 (3.83)

for some q1 and q2 such that q1 2 CR1
(p1;N1) and q2 2 Cr2(p2;N2).

Given two tori T1 and T2, the TTI curve contains a degenerate circle that is a

cross-sectional circle of T1 as well as an Yvone-Villarceau circle of T2, if and only

if r1 = R2 and there is q 2 CR1
(p1;N1) \ Cr2(p2;N2) such that N1;q = N2;q.

Figure 3.13(e) shows a cross-sectional circle of T1 and an Yvone-Villarceau circle of

T2 that are coincident in the TTI curve.

3.7.3 Yvone-Villarceau Circles of T1 and T2

We consider the set of all Yvone-Villarceau circles embedded in the torus T1 =

Tr1;R1
(p1;N1):

�Y VT1 = fCR1
(q1;N1;q1) j q1 2 Cr1(p1;N1) g; (3.84)

where

N1;q1 = � r1

R1

(q1 � p1)�N1

kq1 � p1k +

s
1� r

2
1

R
2
1

N1:

We consider the set of all Yvone-Villarceau circles embedded in the torus T2 =

Tr2;R2
(p2;N2):

�Y VT2 = fCR2
(q2;N2;q2) j q2 2 Cr2(p2;N2) g; (3.85)

where

N2;q2 = � r2

R2

(q2 � p2)�N2

kq2 � p2k
+

s
1� r

2
2

R
2
2

N2:

Comparing the two sets �Y VT1 and �Y VT2 in Equations (3.84){(3.85), we derive the

following relations:

N1;q1 = �N2;q2 (3.86)

q1 = q2 (3.87)

R1 = R2 (3.88)
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for some q1 and q2 such that q1 2 Cr1(p1;N1) and q2 2 Cr2(p2;N2).

Given two tori T1 and T2, the TTI curve contains a degenerate circle that is an

Yvone-Villarceau circle of T1 as well as that of T2, if and only if R1 = R2 and there

is q 2 Cr1(p1;N1) \ Cr2(p2;N2) such that N1;q = N2;q. Figure 3.13(e) shows an

Yvone-Villarceau circle of T1 and an Yvone-Villarceau circle of T2 that are coincident

in the TTI curve.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.13: Circles in the TTI curve.
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Chapter 4

Con�guration Space Approach

and Related Previous Work

This chapter explains the basic idea of the C-space approach to detect and compute

torus/simple-surface intersections and compares the C-space approach with other

methods.

4.1 Con�guration Space Approach

For the sake of simplicity, we consider torus/sphere intersection (TSI). When we

consider the sphere as an obstacle and the torus as an envelope surface of a moving

ball along a circular trajectory, the C-space obstacle of the sphere is bounded by the

inner and outer o�sets of the sphere (which are two concentric spheres). Intersecting

the trajectory circle of the moving ball with the C-space obstacle (bounded by

two spheres), we can e�ectively classify the topological type of the TSI curve and

construct the TSI curve with all its singularities detected properly.

Given a torus T and a sphere S, in each of the �rst three cases shown in Fig-

ure 4.1, the toroidal volume bounded by T and the ball bounded by S intersect in

a single connected (volumetric) component. However, their boundary surfaces T

and S intersect in two closed loops (Figure 4.1(a)), in an 8-�gured loop with self-

intersection (Figure 4.1(b)), and in a single loop (Figure 4.1(c)), respectively. The

last case shown in Figure 4.1(d) is related to a singular tangential intersection point.

Note that the bold dots represent the center positions of the sweeping ball (inside
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the torus T ), each corresponding to a tangential contact with the sphere S. In Fig-

ure 4.2, these dots correspond to the intersection points between the main circle C

(of the torus T ) and the C-space obstacle boundary (composed of two concentric

spheres). Note that the circle C is also the circular trajectory of the sweeping ball's

center.

The classi�cation of each possible type of intersection loop(s) can be made con-

siderably easier when we do the C-space transformation. That is, in Figure 4.2, the

sphere S is expanded to a volume bounded by two spheres SI and SO, and the torus

is shrunk to its main circle C. In Figure 4.2(a), the intersection between the circle

C and the volume (bounded by S
I and S

O) has two connected components (i.e.,

two circular arcs). Each component corresponds to a closed loop in the intersection

curve between T and S. Moreover, in Figure 4.2(c), the intersection (in the C-space)

has only one connected component. Therefore, the intersection curve of T and S

has a single closed loop. Figure 4.2(b) shows an interesting degenerate case in which

the intersection (between C and the C-space obstacle) may be considered as two

components connected at the tangential intersection point with the inner sphere SI .

The corresponding intersection curve of T and S is an 8-�gured curve which may be

considered as two intersection loops connected at a singular intersection point (on

the sphere S).

Based on a C-space approach, the torus/simple-surface intersection problem is

reduced to a simpler problem of intersecting the C-space obstacle (which consists of

two o�set surfaces of the obstacle surface) with the trajectory of the moving ball's

center. The torus/plane intersection (TPI) problem is reduced to that of intersecting

a circle with two parallel planes. The torus/sphere intersection (TSI) problem is

reduced to: either (i) classifying the relative position of a point with respect to the

regions bounded by two tori, or (ii) intersecting a circle with two concentric spheres.

The torus/cylinder intersection (TYI) problem is reduced to: either (i) intersecting

a line with two tori, or (ii) intersecting a circle with two co-axial cylinders. The

torus/torus intersection (TTI) problem is reduced to that of intersecting a circle

with two tori.

Compared with other cases, the torus/cone intersection (TKI) problem needs

special treatment. In the TKI problem, we always consider the cone as an obstacle,

and the torus as the envelope surface of a moving ball. We may interpret a cone

as the envelope surface of a moving ball (with a linear radius function r(t)) along
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a half-in�nite line l(t), where t � t0 for some t0. Generally speaking, a cone is the

envelope surface of the moving ball Br(t)(q) with a linear radius function r(t) (with

r(t0) = 0) and the ball center q moving along a line l(t) with a uniform speed. The

d-o�set surface of a cone is also a cone which is given as the envelope surface of

a moving ball Br(t)+d(q) with its center q moving along the same line l(t) and its

radius function given as r(t) + d, where t � t0. The o�set surface of the cone has

a spherical patch attached at an end instead of a vertex. The TKI problem is then

reduced to that of intersecting a circle with two such co-axial cones (with attached

spherical patches).

Intersections between the C-space obstacle and the trajectory of the moving ball's

center provide an e�ective way of computing singular points and starting points for

closed loops in the intersection curve. Table 4.1 shows all computations required in

detecting singularities and computing starting points (for numerical curve tracing).

The circle/cone, circle/ellipse, circle/torus, and line/torus intersection points can

be computed by solving polynomial equations of degree at most four. In computing

the starting points and singular points, all other required computations are vec-

tor/distance computations which are signi�cantly easier to compute than polynomial

equations of degree four. All computations listed in Table 4.1 can be implemented

e�ciently and robustly using 
oating-point arithmetic. The intersection curve itself

(in general, a quartic space curve for TPI or TSI, and an algebraic space curve of

degree eight for TYI, TKI, and TTI) is traced numerically as a sequence of cubic

curve segments [1, 3, 4].

4.2 Related Previous Work

We brie
y review two other approaches that can be needed in computing torus/simple-

surface intersection curves: i) an algebraic method for intersecting two cyclides and

ii) a subdivision method.

Cyclide is the envelope surface of a sphere with varying radii, which is tangent

to three given �xed spheres. Simple surfaces (plane, natural quadrics, and torus)

are special types of cyclide. Therefore, general algebraic methods [5, 10, 15] for

intersecting two cyclides may be used in computing the intersection curves of a

torus and a simple surface.

de Pont [5] and Martin et al. [15] proposed an algebraic method that computes
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Torus/Plane Intersection (i) circle/plane intersection

(ii) vector/distance computation

Torus/Sphere Intersection (i) circle/circle intersection

(ii) vector/distance computation

Torus/Cylinder Intersection (i) circle/ellipse intersection

(ii) line/torus intersection

(iii) circle/torus intersection

(iv) vector/distance computation

Torus/Cone Intersection (i) circle/cone intersection

(ii) line/torus intersection

(iii) vector/distance computation

Torus/Torus Intersection (i) circle/torus intersection

(ii) vector/distance computation

Table 4.1: Operations for computing starting points and singular points
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the cyclide/plane, cyclide/quadric, and cyclide/cyclide intersections. The algebraic

method computes the intersection curve by substituting the parametric equation of

one cyclide into the implicit equation of another cyclide. For example, the intersec-

tion curve of a cyclide and a quadric (or a plane) can be represented by the following

implicit equation:

C(u; v) = (c0u
2 + c1u+ c2)v

2 + (c3u
2 + c4u+ c5)v + (c6u

2 + c7u+ c8) = 0:

For a �xed value of u, this is a quadratic equation of v, the solution of which can be

represented exactly using radicals. There is a real solution of v if and only if

� = (c3u
2 + c4u+ c5)

2 � 4(c0u
2 + c1u+ c2)(c6u

2 + c7u+ c8) � 0:

The cyclide/cyclide intersection curve C(u; v) = 0 is derived as follows:

C(u; v) = [ u4 u
3

u
2

u 1 ] [ M ]

2
66666666664

v
4

v
3

v
2

v

1

3
77777777775
= 0;

where [M ] is a 5 � 5 matrix with constant elements. For a �xed value of u (re-

spectively, v), the intersection points are computed by solving a quartic polynomial

equation of v (respectively, u).

Johnstone [10] presented an intersection algorithm between a cyclide and a ringed

surface, where a ringed surface is the sweep surface of a circle. By decomposing the

ringed surface into a set of circles, and then performing several steps of inversion,

the cyclide/ringed-surface intersection problem is reduced to a cyclide/ruled-surface

intersection problem. Since the intersection between a cyclide and a line is computed

by solving a polynomial equation of degree at most four, the intersection between

a cyclide and a ruling line has a closed-form solution. The intersection curve for

the original cyclide/ringed-surface is computed by performing the inversion for the

intersection points of a cyclide and ruling lines.

As we have discussed in Section 1, the algebraic methods are general, but they

have limitations in robustness. Moreover, it is not easy to determine the topology

of the intersection curve. In the torus/plane and torus/quadric intersections, the
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double points and the range of the parameter value over which the intersection

curve exists can be computed. However, these informations are not enough to know

the number of closed loops and singular curves in the intersection curve. It is also

hard to determine that a connected component in the intersection curve is singular

or regular. Moreover, for the case of torus/torus intersection, the location of double

points and the range of the real part of the intersection curve cannot be computed.

Without knowing the parameter ranges over which the intersection curve exists, it

is hard to detect small closed loops in the intersection curve.

The subdivision method is an approach which recursively subdivides given sur-

faces until detect all closed loops. Sederberg et al. [27] showed that, if two non-

singular surface patches intersect at a closed loop, and the dot product between

any normal vector on one surface and any other normal vector on either surface is

never zero, and the normal vector is uniquely de�ned at every point on each surface

region, there exists a line which is perpendicular to both surface patches simultane-

ously. Using this fact and by comparing Gaussian maps of a given torus and a simple

surface, we can subdivide given surfaces to detect closed loops in the intersection

curve. For the case of a plane, a cylinder, or a cone, the Gaussian map is a point, a

great circle, and a circle, respectively, in the unit sphere. For the case of a sphere

or a torus, the Gaussian map is a unit sphere. If two surfaces have a closed loop,

their Gaussian maps are overlap. When we subdivide the two surfaces until their

Gaussian maps do not overlap, all the closed loops can be detected.

The subdivision method has a disadvantage. That is, when the two surfaces in-

tersect almost tangentially, the subdivision may repeat almost inde�nitely. Because

of round-o� errors, it becomes very di�cult to connect (with correct topology) the

small intersection curve segments of subdivided surface patches.

The C-space approach reduces a surface/surface intersection problem to a curve/

surface intersection problem. The topological types of the intersection curve are de-

termined by curve/surface intersection e�ciently and robustly. The starting points

and the singularities in the torus/simple-surface intersection are exactly computed,

by constant number of computing curve/surface intersection and vector/distance

computations. Since exact starting points and singular points are given, the inter-

section curve itself can be traced accurately and robustly.
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Chapter 5

Torus and Plane Intersection

This chapter introduces a method to compute the TPI curve based on a C-space

approach. Given a torus T = Tr;R(p1;N1) and a plane L = L(p2;N2), we consider

the plane L as an obstacle and the torus T as the envelope surface of a moving ball

Br(C(t)). That is, T = Bdr([Br(C(t))), where C(t) is a circle of radius R.

5.1 Case Analysis for TPI Curve

By applying translation and rotation if necessary, we may assume that the torus T

is given in a standard position and orientation; that is, its center is at the origin and

its main circle is contained in the xy-plane: T = Tr;R(0; e3), where 0 = (0; 0; 0) and

e3 = (0; 0; 1). The plane L is given in an arbitrary position: L = L(p;N).

The C-space obstacle of the plane L (with respect to the moving ball Br(C(t))

of radius r) is bounded by the �r-o�sets of the plane L: that is, two o�set planes

L
O = L(p+rN;N) and LI = L(p�rN;N). Let LO� and LO+ denote the open regions

(of IR3) fq j q = qi + sN; for qi 2 L; and s > 0g and fq j q = qi + sN; for qi 2
L; and s < 0g, respectively, that are separated by LO. LI� and L

I
+ are de�ned in a

similar way.

The two planes LO and L
I separate the space IR3 into three open regions: LO+,

L
O
� \ L

I
+, and L

I
�. Consider the case in which the ball Br(C(t)) moves, while its

center C(t) is located in the open region L
O
� \ L

I
+, only for t1 � t � t2. The ball

Br(C(t)) (t1 � t � t2) intersects with the plane L = L(p;N) in a circular disc D(t).
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We have the following relation (see Figure 5.1):

D(t) = Br(C(t)) \ L � L

[D(t) = [(Br(C(t)) \ L) = ([Br(C(t))) \ L � L:

The TPI curve T \ L is the boundary curve of the region [D(t) on the plane L

(Figure 5.1(b)). Moreover, it is the envelope curve of the one-parameter family of

circular discs D(t) on the plane L. With the exception of some degenerate cases,

each D(t) contributes two points, 
�(t) and 
+(t), to the envelope curve. These

two points are the same as the two intersection points of the cross-sectional circle

Cr(C(t);NC(t)) with the plane L, where NC(t) =
jjC 0(t)jj
C
0(t)

(Figure 5.1(c)).

Assume that the ball Br(C(t)) intersects with the plane L, for t1 � t � t2, and

there is no intersection between Br(C(t)) and L, for t1�� < t < t1 and t2 < t < t2+�,

where � > 0 is an arbitrarily small positive number. Then, there are some values of

t̂1 and t̂2 such that (Figure 5.1)

� t1 < t̂1 < t̂2 < t2.

� Cr(C(t);NC(t)) \ L = ;, for t1 < t < t̂1 or t̂2 < t < t2.

� Cr(C(t);NC(t)) \ L = f
�(t) = 
+(t)g, for t = t̂1; t̂2.

� Cr(C(t);NC(t)) \ L = f
�(t); 
+(t)g, with 
�(t) 6= 
+(t), for t̂1 < t < t̂2.

The boundary curve of the region [t1�t�t2D(t) (on the plane L) is the same as the

union

[t̂1�t�t̂2
�
Cr(C(t);NC(t)) \ L

�
:

Since the cross-sectional circles Cr(C(t);NC(t)) are all disjoint, no boundary point

of [t1�t�t2D(t) can be shared by two di�erent instances of Cr(C(t);NC(t)), for

t̂1 � t � t̂2. Therefore, the two curves 
�(t) and 
+(t) have no intersection, for

t̂1 < t < t̂2. They have no self-intersection, either. Moreover, these two curves are

connected at two common end points: 
�(t̂1) = 
+(t̂1) and 
�(t̂2) = 
+(t̂2). The

resulting boundary curve of [D(t) thus forms a closed loop on the plane L.

In the above discussion, we showed that: when the circle C(t) intersects with

L
O
� \ L

I
+, but is not totally contained in the open region L

O
� \ L

I
+, each connected

component of the intersection C(t) \ (LO� \ L
I
+) produces a closed loop in the TPI
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(a) T \ L

(b) [t1�t�t2D(t)


+(t)


�(t)


�(t̂1) = 
+(t̂1)


�(t̂2) = 
+(t̂2)

(c) [t̂1�t�t̂2
�
Cr(C(t);NC(t)) \ L

�

(d) 
�(t) and 
+(t)

Figure 5.1: 
�(t) and 
+(t) which generate T \ L
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curve. We can easily show that there are at most two connected components in the

intersection C(t)\ (LO�\LI+). This is because the circle C(t) may intersect with the

plane LI at no more than two points. Similarly, the circle C(t) may intersect with

the plane LO at no more than two points.

The �gures in the left columns of Figures 5.2{5.5 illustrate the relative position

of the main circle CR(0; e3) of the torus T in the C-space of the plane L; the

�gures in the right columns of Figures 5.2{5.5 illustrate the corresponding relative

con�gurations of T and L.

When the circle C(t) is totally contained in the open region L
O
+ or LI�, there

is no TPI curve since no ball Br(C(t)) intersects with the plane L (Figure 5.2(a)).

Next, we consider the case in which the circle C(t) is totally contained in the open

region L
I
+ \ L

O
�. In this case, each cross-sectional circle Cr(C(t);NC(t)) intersects

with the plane L at two di�erent points: 
�(t) and 
+(t). As the cross-sectional

circle Cr(C(t);NC(t)) sweeps out the entire torus T , the two points, 
�(t) and 
+(t),

generate two smooth curves that bound the connected region [D(t) on the plane L.

Therefore, the TPI curve consists of two closed loops (Figure 5.2(b)). The starting

points to detect T \L can be computed by intersecting the plane L with an arbitrary

cross-sectional circle of T .

If C(t) is embedded in L
I (or LO), then the TPI curve is a singular circle with

multiplicity two. In this case, this singular circle is a pro�le circle of T .

The necessary and su�cient condition for the TPI curve to have the singularity

at a point qL 2 L is that C(t) intersects with L
I or LO at a point C(t1), and

Cr(C(t1);NC(t1)), intersects with L at qL tangentially. If the circle C(t) has a

tangential contact (at a point q) with either LI or LO, then the TPI curve contains

a singular point qL, where q = qL + rN if q 2 L
O, or q = qL � rN if q 2 L

I . If

C(t) is not embedded in LI [LO and C(t) has no tangential contact with L
I [ LO,

then there is no singular point in the TPI curve.

If the circle C(t) has a tangential contact (at a point q) with either LI or LO,

and the circular arc (C(t)� q) is totally contained in the region L
I
+ \ LO�, then the

two closed loops in the TPI curve have a contact at qL, forming an 8-�gured loop

(Figure 5.3(a)), where q = qL + rN if q 2 L
O, or q = qL � rN if q 2 L

I . When

the circle C(t) has a tangential contact (at a point q) with either LI or LO, and

(C(t) � q) \ (LI+ \ L
O
�) consists of two circular arcs, then the two closed loops in

the TPI curve have a contact at qL, forming an 8-�gured loop (Figure 5.3(b)). In
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Figure 5.3(c), C(t) has a tangential intersection with L
I at a point q 2 L

I . The

corresponding TPI curve is a tangent isolated point qL, where q = qL � rN.

(a)

(b)

x

y

z

x

y

z

x

y

z

x

y

z

Figure 5.2: Regular TPI curves

Figures 5.4{5.5 show the cases in which the intersection C(t) \ (LO� \ L
I
+) has

one and two connected component(s). The corresponding TPI curve consists of one

and two closed loop(s).

Figures 5.6(a){(c) show degenerate cases in which the circle C(t) has two tangen-

tial intersections with LI [LO. Each tangential intersection generates a singularity

in the corresponding TPI curve. Therefore, there are two singular points in the TPI

curve. Being a self-intersection point of the TPI curve, each singular point has mul-

tiplicity two. When we pass a plane L through the two singular points, the plane L

cannot intersect with any other point of the TPI curve since the plane L already in-

tersects with the TPI curve (of degree four) at four points (counting the multiplicity
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Figure 5.3: Singular TPI curves
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properly). The only exception is the case in which the plane L completely contains

the TPI curve. This means that each component of the singular TPI curve is a pla-

nar curve. That is, this curve must be a circle. In fact, in this case, the TPI curve

consists of two Yvone-Villarceau circles of T . Consequently, the TPI curve consists

of two circles when there are two singular points. Each singularity can be easily

detected from a tangential intersection of C(t) with the two o�set planes LO [ LI .

5.2 Algorithm: Torus Plane Intersection

Algorithm: Torus Plane Intersection of Appendix A.1 summarizes the algorithm

discussed in this section. We assume that two curve tracing routines: Trace Singular

TPI Curve ( T;L; P ) and Trace Regular TPI Curve( T;L; P ), are available, where

T is a torus, L is a plane, and P is the set of starting points (one for each closed

loop of the TPI curve). Each singular intersection curve can be traced starting

from its singular point (see also Piegl [20, 21]), the details of which are given in the

routine: Trace Singular TPI Curve. To deal with the cases in which T and L have

no tangential intersection point, a starting point must be generated on each closed

loop of the TPI curve. After that, each curve component is traced using the routine:

Trace Regular TPI Curve.

In Lines (1), (2), and (4), we assume that the routines computing degenerate

circles of the TPI curve are available (see Section 3.3 and Figure 3.2). Line (3) cor-

responds to the case shown in Figure 5.4. Assume that the ball Br(C(t)) intersects

with the plane L, only for t1 � t � t2, (i.e., C(t1) = p1 and C(t2) = p2), and the

cross-sectional circle Cr(C(t);NC(t)) intersects with the plane L, for t1 < t̂1 � t �
t̂2 < t2. Since the TPI curve is symmetric with respect to both T and L, we have

the following relation:

t1 < t̂1 � t1 + t2

2
� t̂2 < t2:

Note that the middle point q in Line (3) is the same as C( t1+t2
2

). Therefore, the

cross-sectional circle Cr(q;Nq) intersects with the plane L at two di�erent points.

We take only one of them as a starting point for numerical curve tracing.

Line (5) corresponds to the case shown in Figures 5.5(a){(c). Let C(ti) = pi,

for i = 1; 2; 3; 4. Note that the ball Br(C(
t1+t2

2
)) is totally contained in L�, and the

ball Br(C(
t3+t4
2

)) is totally contained in L
+, where L+ and L

� are two half-spaces

separated by the plane L. Then any pro�le circle of the torus T will intersect with the
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Figure 5.4: The TPI curve which consists of one intersection loop
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Figure 5.4: (cont.)
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Figure 5.5: The TPI curve which consists of two intersection loops
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Figure 5.6: Yvone-Villarceau circles in TPI
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plane L at two di�erent points (see Figure 3.1(a) for pro�le circles). Moreover, each

intersection point belongs to a di�erent component of the TPI curve. In Line (5), we

take the pro�le circle CR+r(0; e3) of the largest radius. The two intersection points

in L \ CR+r(0; e3) are used as the starting points for the two closed loops in the

TPI curve.
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Chapter 6

Torus and Sphere Intersection

This chapter shows that the TSI curve is a quartic space curve, and then introduces

two methods of computing the TSI curve based on a C-space approach. Given a

torus T = Tr;R(p1;N) and a sphere S = S�(p2), the �rst method considers the

case of 0 < � � r, and the second method considers the case of 0 < r < �. In

the �rst method, the relative position of the sphere center p2 with respect to the

torus T determines the TSI curve. In the second method, the relative position of

the main circle CR(p1;N) with respect to the sphere S determines the TSI curve.

The C-space approach is useful in classifying the relative positions.

6.1 TSI as a Quartic Curve

We show that the real, a�ne TSI curve is the same as the intersection curve of a

sphere and a quadric surface. Thus, the algebraic degree of a real, a�ne TSI curve

is four at most. By applying translation and rotation if necessary, we may assume

that the torus T is given in a standard position and orientation; that is, its center

is at the origin and its main circle is contained in the xy-plane: T = Tr;R(0; e3),

where 0 = (0; 0; 0) and e3 = (0; 0; 1). The sphere S is in an arbitrary position:

S = S�((�; �; 
)).

The implicit equation of the torus T = Tr;R(0; e3) is given as follows:

(x2 + y
2 + z

2 +R
2 � r

2)2 � 4R2(x2 + y
2) = 0: (6.1)
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Moreover, the implicit equation of the sphere S = S�((�; �; 
)) is given by

(x� �)2 + (y � �)2 + (z � 
)2 � �
2 = 0;

equivalently,

x
2 + y

2 + z
2 = �

2 � �
2 � �

2 � 

2 + 2�x+ 2�y + 2
z: (6.2)

By substituting Equation (6.2) to Equation (6.1), we obtain

(2�x+ 2�y + 2
z +E)2 � 4R2(x2 + y
2) = 0; (6.3)

where E = R
2 � r

2 + �
2 � �

2 � �
2 � 


2. This equation can be reformulated as a

quadric surface as follows:

4(�2 �R
2)x2 + 4(�2 �R

2)y2 + 4
2z2 + 8(��)xy + 8(�
)yz + 8(
�)zx

+ 4(�E)x + 4(�E)y + 4(
E)z +E
2 = 0: (6.4)

The TSI curve is the same as the intersection curve of the sphere S and the

quadric surface de�ned by Equation (6.4). But, the quadric surface of Equation (6.4)

is not a natural quadric. For example, when (�; �; 
) = (1; 0; 0), R = 3, r = 1, and

� = 3, Equation (6.4) represents an elliptic cylinder. When (�; �; 
) = (3; 0; 0), R =

2, r = 0:5, and � = 3, Equation (6.4) represents a hyperbolic cylinder. Therefore,

we cannot use the intersection algorithms for natural quadrics to solve the TSI

problem [16, 18, 20, 26, 28]. Although there are algebraic algorithms for intersecting

two general quadrics [6, 12, 13, 29], they have limitations in numerical stability (see

References [16, 18] for related discussions). Therefore, we need to develop an e�cient

and robust geometric method to compute the TSI curve. In this paper, we present

such an algorithm using a geometric transformation that reduces the torus/sphere

intersection problem to a simpler problem of: either (i) classifying the containment

of a point in an open region bounded by two toroidal surfaces, or (ii) intersecting

a circle with two concentric spheres. Using a few vector/distance computations, we

can reduce this problem to: either (i) classifying the containment of a point in a

circular region, or (ii) intersecting two circles in the same plane. These computations

can be implemented in an e�cient and robust way using 
oating-point arithmetic.

We discuss this in more detail in following sections.
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6.2 The Case of 0 < � � r

In this case, we consider the torus T as an obstacle and compute its C-space obstacle

with respect to the sphere S. By applying a simple translation, we may assume

that the torus T has its center at the origin: T = Tr;R(0;N), and the sphere S is

given as: S = S�(p). The C-space obstacle of T is bounded by the ��-o�sets of
the torus: i.e., the inner o�set torus T I = Tr��;R(0;N) and the outer o�set torus

T
O = Tr+�;R(0;N).

6.2.1 Case Analysis for Singular Intersections

When r + � � R, the outer torus T
O self-intersects. Let T

D denote the self-

intersected part of TO (see Figures 2.2(b){(c)). (In the case of r + � < R, TO

has no self-intersection; thus we have TD = ;.) Based on the relative position of

p with respect to T I , TO, and T
D, we can classify all possible topological types of

the TSI curves. The TSI curve has singularity (i.e., the torus T and the sphere S

have a tangential intersection at pT 2 T \ S) if and only if the center p of S is on

the boundary of T I , TO, or TD, where pT is an orthogonal projection of p onto the

surface T . Note that p is also the ��-o�set point of pT 2 T (see Figure 6.1). There

are �ve di�erent cases to consider (for singular intersections):

1. p 2 T
O n TD: the TSI curve degenerates into a point pT (Figure 6.1(a)).

2. p 2 T
D and p is a vertex of TD: the TSI curve degenerates into a circle

(Figure 6.1(b)).

3. p 2 T
D and p is not a vertex: the TSI curve is a quartic space curve with

singularity at pT (Figure 6.1(c)).

4. p 2 T
I and 0 < � < r: the TSI curve degenerates into a point pT (Fig-

ure 6.1(d)).

5. p 2 T
I and 0 < � = r: the TSI curve degenerates into a circle (Figure 6.1(e)).

The �gures in the left columns of Figures 6.1{6.2 illustrate the relative positions of

p in the C-space of the torus T ; the �gures in the right columns of Figures 6.1{6.2

illustrate the corresponding relative con�gurations of T and S.
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Figure 6.1: Degenerate or singular TSI curves.
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Figure 6.1: (cont.)
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In case 2 considered above, the torus and the sphere touch along a degenerate

circle. When we enlarge the radius � of the sphere S slightly, the sphere S will

intersect with the torus T in two di�erent circles. Therefore, the degenerate circle of

Figure 6.1(b) may be considered as the limit of these two converging circles. When

the limiting circle is interpreted as an overlap of two identical circles, the singular

degenerate circle has a total algebraic degree of four. Therefore, it is clear that there

is no other loop in the TSI curve.

In case 3 considered above, the TSI curve has degree four and the curve has four

branches at the singular point (i.e., at the tangential intersection point of T and

S). (In algebraic geometry, two opposite branch directions are counted as a single

branch; however, in this paper, we count them separately to make the counting

scheme more intuitive for the engineering community.) We can easily compute these

four branches by comparing the Dupin indicatrices of the torus T and the sphere S

at their tangential intersection point (see also Piegl [21]). The whole TSI curve can

be detected by tracing along only two appropriate branches at the singular point.

Using the result of Farouki et al. [6], we can also represent the TSI curve (with

a singular point) exactly as a rational quartic space curve. The fact that there is

no other loop in the TSI curve will become clear when we discuss the relationship

between the number of intersection loops and the winding number assigned to each

3D (volumetric) open region bounded by T I , TO, and T
D.

In case 5, when we enlarge the radius � of the sphere S slightly, the sphere S

will intersect with the torus T in an irreducible quartic space curve. But, when we

relocate the center p of S in the main plane of T and at a distance
p
R
2 + �

2 � r
2

from the center of T , the sphere S will intersect with the torus T in two degenerate

circles (see Figure 3.7). As the radius � of S converges to the minor radius r of T ,

the two degenerate circles converge to the singular degenerate circle of case 5 shown

in Figure 6.1(e). Therefore, we can apply an argument similar to that of case 2 and

conclude that there is no other loop in the TSI curve.

6.2.2 Case Analysis for Non-Singular Intersections

The TSI curve has a singularity if and only if the center p of S is located on the

toroidal surface T I , TO, or TD. Let T I
� and T I

+ denote the interior and exterior open

regions of IR3 separated by the closed surface T I . TD
� and T

D
+ are de�ned similarly.

74



T
O
� and T

O
+ are the open regions separated by the closed surface TO n TDo

, where

T
Do

denotes TD except two vertices of TD. There are four di�erent cases to consider

(for non-singular intersections):

1. p 2 T
O
+ : the TSI curve is empty (Figure 6.2(a)).

2. p 2 T
I
�: the TSI curve is empty (Figure 6.2(b)).

3. p 2 T
O
� \ T I

+ \ TD
+ : the TSI curve has only one loop (Figure 6.2(c)).

4. p 2 T
D
� : the TSI curve has two loops (Figure 6.2(d)).

Note that each point p 62 T
I [TO [ TD (i.e., p is not located on any of the toroidal

surfaces T I , TO, and T
D) must belong to one of the four open regions enumerated

in the above classi�cation. In case 4 considered above, each loop of the TSI curve

may degenerate into a circle when the point p is located on the main axis of the

torus T (see Section 3.5 and Figure 3.4).

6.2.3 Winding Number Theory

The number of closed loops in the TSI curve is closely related to the winding number

of the two toroidal surfaces TO and T
I around the center p of the sphere S. When

we give the normal orientations of the surfaces TO and TD as the outward directions

(i.e., pointing to the regions TO
+ and TD

+ , respectively) and that of the surface T I as

the inward direction (i.e., pointing to the region T I
�), the winding numbers assigned

to the open regions T
O
+ and T

I
� are both zero. Moreover, the winding number

assigned to TO
� \T I

+\TD
+ is one and that assigned to TD

� is two. A formal de�nition

of winding number can be found in a standard textbook of di�erential topology [8].

But there is a simple way to compute the winding number assigned to an open

region. That is, when we cut the space IR
3 by a plane L that passes through a

point p, the toroidal surfaces T I and TO will intersect with the plane in some closed

planar curves. These closed curves bound the planar open regions: TO
+ \L, T I

� \L,
(TO
� \ T

I
+ \ T

D
+ ) \ L, and T

D
� \ L in the plane L. When we trace each curve so

that the curve normal (inherited from the surface normal orientation) is always to

the right-hand side of the curve advancing direction, we can determine the winding

number of the planar curves around the selected point p. Figure 6.3 shows two

examples of planar cuts, in which the plane L is taken so that it contains the point
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Figure 6.2: Regular TSI curves.
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Figure 6.2: (cont.)
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p and is orthogonal to the normal vector N. Figure 6.3(a) is the result of a planar

cut applied to the example shown in Figure 6.2(c). Note that the winding number of

two oriented circles around p is one. Figure 6.3(b) shows a similar result applied to

the example of Figure 6.2(d). The winding number of four oriented circles around p

is two. One can also show that the winding number is unique as long as p is selected

in the same open region: TO
+ , T I

�, T
O
� \ T I

+ \ TD
+ , or TD

� .

When we consider the sphere S = S�(p) as a moving sphere, as the sphere S

passes through a touching con�guration with the torus T , the number of closed loops

in the TSI curve T \ S increases/decreases. That is, when the center p of S passes

through T
I , TO, or TD, the number of TSI loops increases/decreases depending on

the winding numbers of the corresponding open regions bounded by the toroidal

surfaces T I , TO, and T
D. A case-by-case analysis of each of the four di�erent cases

possible (enumerated in Figure 6.2) will show that the winding number of each open

region properly classi�es the number of closed loops in the TSI curve. In general, an

argument based on the Jordan-Brouwer Separation Theorem will provide a rigorous

proof for the relation between the winding number and the number of closed loops

in the TSI curve [8]. We skip the details here.

Guibas et al. [7] showed an application of the winding number (de�ned for planar

closed loops which may self-intersect) in computing the number of connected com-

ponents in the intersection of two planar objects. However, they did not consider

an intersected volume with interior holes (e.g., an object with genus 1) such as the

volume bounded by T and S in Figure 6.2(d).

6.2.4 Algorithm: Torus Sphere Intersection I

Algorithm: Torus Sphere Intersection I of Appendix A.2 summarizes the TSI al-

gorithm based on the above case analyses. In this algorithm, we assume that cu-

bic curve tracing routines: Trace Singular TSI Curve(T; S; P ) and Trace Regular

TSI Curve(T; S; P ), are available, where T is a torus, S is a sphere, and P is the

set of starting points (exactly one point for each closed loop of the TSI curve). Each

singular intersection curve can be traced starting from its singular point (see also

Piegl [21]), the details of which are given in the routine: Trace Singular TSI Curve.

One may also use the technique of Farouki et al. [6] for an exact rational parametriza-

tion of the singular quartic space curve. To deal with the case in which T and S have
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Figure 6.3: Counting winding numbers using planar cuts
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no tangential intersection point, a starting point must be generated on each closed

loop of the TSI curve. After that, each curve component is traced using the routine:

Trace Regular TSI Curve. Our implementation of the two curve tracing routines is

based on customizing the general SSI procedures of Choi [4] to the special case of

intersecting a torus with a sphere (see also Bajaj et al. [1, 3]).

Lines (1){(3) compute orthogonal projections of p onto the torus T . Given a

point p (not located on the main axis of the torus T ), the closest point pc of the

main circle CR(0;N) to the point p is computed as follows:

pc = R

p� hp;NiN
kp� hp;NiNk :

Similarly, the farthest point pf is given by:

pf = �R p� hp;NiN
kp� hp;NiNk :

Line (4) considers the case in which there is only a single loop in the TSI curve. It

is easy to show that the sphere S and the cross-sectional circle Cr(pc;Npc) intersect

at two di�erent points. We take any one of the two points as a starting point for curve

tracing. Line (6) handles the case in which the intersected volume bounded by T

and S is an object with genus 1 (see Figure 6.2(d)). In this case, each cross-sectional

circle Cr(C(t);NC(t)) intersects the sphere S at two di�erent points. Moreover, each

point belongs to a di�erent loop in the TSI curve. Thus both intersection points

can be used as starting points for numerical curve tracing.

In Line (5), we assume the availability of the routine: Compute Pro�le Circles

(T ,S), which computes two degenerate pro�le circles in the TSI curve. Each pro�le

circle is contained in a plane that is orthogonal to the normal vectorN. The distance

of the plane from the main plane of the torus and the radius of each pro�le circle

can be computed by intersecting two circles (see Section 3.4 and Figure 3.4).

In Algorithm: Torus Sphere Intersection I, except the procedures for numerical

curve tracing, all the required computations are vector/distance computations and

circle/circle intersections. The numerical errors in these operations can be measured

geometrically. Moreover, the maximum distance between a cubic approximation

curve segment and the torus (or the sphere) can be measured with high accuracy,

utilizing the simple structure of the torus and the sphere. The geometric nature of

these errors enables an e�cient and robust implementation of our algorithm using


oating-point arithmetic.
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6.3 The Case of 0 < r < �

In this case, we consider the sphere S = S�(p2) as an obstacle and the torus

T = Tr;R(p1;N1) as the envelope surface of a moving ball Br(C(t)), where C(t)

is a parametrization of the main circle CR(p1;N1) of the torus T . That is, T =

Bdr([Br(C(t))), where Bdr means the boundary of a closed (volumetric) region in

IR
3. By applying a translation, we may assume that the sphere S has its center

at the origin: S = S�(0), and the torus T is given as: T = Tr;R(p;N). The C-

space obstacle of the sphere S (with respect to the moving ball Br(C(t)) of radius

r) is bounded by the �r-o�sets of the sphere S: that is, the inner o�set sphere

S
I = S��r(0) and the outer o�set sphere SO = S�+r(0). Let SI� and S

I
+ denote

the inner and outer open regions (of IR3) that are separated by SI . SO� and S
O
+ are

de�ned in a similar way.

6.3.1 Counting the Number of Closed Loops

When we give the normal orientation of the outer sphere SO as outward (i.e., into

the direction pointing to the open region S
O
+), and that of the inner sphere SI as

inward (i.e., into the direction pointing to the open region S
I
�), the two spheres SI

and S
O separate the space IR3 into three open regions: SO+ , S

O
� \ SI+, and S

I
�, with

the corresponding winding numbers: zero, one, and zero, respectively. Consider the

case in which the ball Br(C(t)) moves, while its center C(t) is located in the open

region SO� \SI+, only for t1 � t � t2. The ball Br(C(t)) (t1 � t � t2) intersects with

the sphere S = S�(0) in a circular disc D(t). We have the following relation (see

Figure 6.4):

D(t) = Br(C(t)) \ S � S

[D(t) = [(Br(C(t)) \ S) = ([Br(C(t))) \ S � S:

The TSI curve T \ S is the boundary curve of the region [D(t) on the sphere S

(Figure 6.4(b)). Moreover, it is the envelope curve of the one-parameter family of

circular discs D(t) on the sphere S. With the exception of some degenerate cases,

each D(t) contributes two points, 
�(t) and 
+(t), to the envelope curve. These

two points are the same as the two intersection points of the cross-sectional circle

Cr(C(t);NC(t)) with the sphere S, where NC(t) =
C0(t)

kC0(t)k (Figure 6.4(c)).
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(a) T \ S

(b) [t1�t�t2D(t)


+(t)


�(t)


�(t̂1) = 
+(t̂1)


�(t̂2) = 
+(t̂2)

(c) [t̂1�t�t̂2
�
Cr(C(t);NC(t)) \ S

�

(d) 
�(t) and 
+(t)

Figure 6.4: 
�(t) and 
+(t) which generate T \ S
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When the main circle CR(p;N) is totally contained in the open region SO+ or SI�,

the TSI curve is empty since no ball Br(C(t)) intersects with the sphere S. Next, we

consider the case in which the main circle CR(p;N) is totally contained in the open

region S
I
+ \ S

O
� . In this case, each cross-sectional circle Cr(C(t);NC(t)) intersects

with the sphere S at two di�erent points: 
�(t) and 
+(t). As the cross-sectional

circle Cr(C(t);NC(t)) sweeps out the entire torus T , the two points, 
�(t) and 
+(t),

generate two smooth curves that bound the connected region [D(t) on the sphere

S. Therefore, the TSI curve consists of two closed loops (Figure 6.5(a)). When the

main circle CR(p;N) has a tangential contact (at a point p0) with either SI or SO,

the two closed loops in the TSI curve have a contact at pS , forming an 8-�gured

loop (Figure 6.5(b)), where pS is the orthogonal projection of p0 onto the sphere S.

Note that p0 is the r-o�set of pS 2 S if p0 2 S
O, or p0 is the (�r)-o�set of pS 2 S

if p0 2 S
I . The �gures in the left columns of Figures 6.5{6.6 illustrate the relative

position of the main circle CR(p;N) of the torus T in the C-space of the sphere

S; the �gures in the right columns of Figures 6.5{6.6 illustrate the corresponding

relative con�gurations of T and S.

Assume that the ball Br(C(t)) intersects with the sphere S, for t1 � t � t2, and

there is no intersection between Br(C(t)) and S, for t1�� < t < t1 and t2 < t < t2+�,

where � > 0 is an arbitrarily small positive number. Then, there are some values of

t̂1 and t̂2 such that (Figure 6.4):

� t1 < t̂1 < t̂2 < t2.

� Cr(C(t);NC(t)) \ S = ;, for t1 < t < t̂1 or t̂2 < t < t2.

� Cr(C(t);NC(t)) \ S = f
�(t) = 
+(t)g, for t = t̂1; t̂2.

� Cr(C(t);NC(t)) \ S = f
�(t); 
+(t)g, with 
�(t) 6= 
+(t), for t̂1 < t < t̂2.

The boundary curve of the region [t1�t�t2D(t) (on the sphere S) is the same as the

union

[t̂1�t�t̂2
�
Cr(C(t);NC(t)) \ S

�
:

Since the cross-sectional circles Cr(C(t);NC(t)) are all disjoint, no boundary point

of [t1�t�t2D(t) can be shared by two di�erent instances of Cr(C(t);NC(t)), for

t̂1 � t � t̂2. Therefore, the two curves 
�(t) and 
+(t) have no intersection, for

t̂1 < t < t̂2. They have no self-intersection, either. Moreover, these two curves are
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connected at two common end points: 
�(t̂1) = 
+(t̂1) and 
�(t̂2) = 
+(t̂2). The

resulting boundary curve of [D(t) thus forms a closed loop on the sphere S.

In the above discussion, we showed that: when the main circle CR(p;N) inter-

sects with S
O
� \ S

I
+, but is not totally contained in the open region S

O
� \ S

I
+, each

connected component of the intersection CR(p;N) \ (SO� \ S
I
+) produces a closed

loop in the TSI curve. We can easily show that there are at most two connected

components in the intersection CR(p;N) \ (SO� \ S
I
+). This is because the main

circle CR(p;N) may intersect with the inner sphere SI at no more than two points.

(The plane L containing the main circle CR(p;N) intersects with the sphere SI in

a circle; then this circle may intersect with CR(p;N) at no more than two points.)

Similarly, the main circle CR(p;N) may intersect with the outer sphere SO at no

more than two points.

(a)

p0

pS

(b)

Figure 6.5: Regular or singular TSI curves.
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Figure 6.5: (cont.)
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6.3.2 More Examples

Figures 6.5(c){(d) show two cases in which the intersection CR(p;N)\(SO�\SI+) has
one and two connected component(s), respectively. The corresponding TSI curve

consists of one and two closed loop(s), respectively. In Figure 6.5(e), the circular

arc CR(p;N)\ (SO� \SI+) has a tangential intersection with SO at a point p0 2 S
O.

The corresponding TSI curve is an 8-�gured curve with singularity at pS 2 S, where

pS is the orthogonal projection of p0 onto the sphere S. Note that p0 is also the

r-o�set of pS .

Each closed loop of Figure 6.5(a) degenerates into a pro�le circle of the torus T

if and only if the main axis of the torus T passes through the center of the sphere S,

which can be detected by the condition: p�N = 0 (see Section 3.4 and Figure 3.4).

Moreover, each closed loop of Figure 6.5(d) degenerates into a cross-sectional circle

of the torus T if and only if the center of the sphere S is contained in the main plane

of the torus T (i.e., hp;Ni = 0) and the distance between the two centers of T and

S (i.e., kpk) satis�es the condition: kpk2 = R
2 + �

2 � r
2 (see Figure 3.7).

Figures 6.6(a){(b) show singular degenerate cases in which the main circle CR(p,

N) has two tangential intersection points with SO[SI . Each tangential intersection

point generates a singular point in the corresponding TSI curve. Therefore, there

are two singular points in the TSI curve. Being a self-intersection point of the TSI

curve, each singular point has multiplicity two. When we pass a plane L through

the two singular points, the plane L cannot intersect with any other point of the TSI

curve since the plane L already intersects with the TSI curve (of degree four) at four

points (counting the multiplicity properly). The only exception is the case in which

the plane L completely contains at least one component of the TSI curve. This

means that each component of the singular TSI curve is a planar curve. Moreover,

this planar curve is embedded in the sphere S. That is, this curve must be a circle.

Consequently, the TSI curve consists of two circles (called Yvone-Villarceau circles)

when there are two singular points (see also Piegl [21] and Figure 3.1(c)). Each

singularity can be easily detected from a tangential intersection of the main circle

CR(p;N) with the two concentric spheres SO [ SI .
Figures 6.6(c){(d) show other degenerate cases in which the main circle CR(p;N)

is totally embedded in the sphere SO or SI . Then the torus T intersects with the

sphere S tangentially along a circle. In this case, the intersection circle must be
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considered to have multiplicity two; that is, as the limit of two converging circles,

which produces an overlap of two identical circles. Therefore, there is no other loop

in the TSI curve.

6.3.3 Algorithm: Torus Sphere Intersection II

Algorithm: Torus Sphere Intersection II of Appendix A.3 summarizes the algorithm

discussed above. Similarly to Torus Sphere Intersection I of Appendix A.2, we as-

sume that the two curve tracing routines: Trace Singular TSI Curve(T; S; P ) and

Trace Regular TSI Curve(T; S; P ) are available. Moreover, in Lines (1), (2), and

(4), we assume that the routines computing degenerate circles of the TSI curve are

available (see Chapter 3 and Figures 3.1{3.7).

Line (3) corresponds to the case shown in Figure 6.5(c). Assume that the ball

Br(C(t)) intersects with the sphere S, only for t1 � t � t2, (i.e., C(t1) = p1 and

C(t2) = p2), and the cross-sectional circle Cr(C(t);NC(t)) intersects with the sphere

S, for t1 < t̂1 � t � t̂2 < t2, (see also Section 6.3.1). Since the TSI curve is symmetric

with respect to both T and S, we have the following relation:

t1 < t̂1 � t1 + t2

2
� t̂2 < t2:

Note that the middle point q in Line (3) is the same as C( t1+t2
2

). Therefore, the

cross-sectional circle Cr(q;Nq) intersects with the sphere S at two di�erent points.

We take only one of them as a starting point for numerical curve tracing.

Line (5) corresponds to the case shown in Figure 6.5(d). Let C(ti) = pi, for

i = 1; 2; 3; 4. Note that the ball Br(C(
t1+t2
2

)) is totally contained inside the sphere

S, and the ball Br(C(
t3+t4
2

)) is totally contained outside the sphere S. Then any

pro�le circle of the torus T will intersect with the sphere S at two di�erent points

(see Figure 3.1(a) for pro�le circles). Moreover, each intersection point belongs

to a di�erent component of the TSI curve. In Line (5), we take the pro�le circle

CR+r(p;N) of the largest radius. The two intersection points in S\CR+r(p;N) are

used as the starting points for the two closed loops in the TSI curve.
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Figure 6.6: Degenerate TSI curves in circle(s).
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(c)

(d)

Figure 6.6: (cont.)
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Chapter 7

Torus and Cylinder Intersection

This chapter introduces two methods that compute the TYI curve based on a C-

space approach. Given a torus T = Tr;R(p1;N1) and a cylinder Y = Y�(p2;N2),

we consider two cases: (i) 0 < r � � and (ii) 0 < � < r, separately. In the case of

0 < r � �, we treat the cylinder as an obstacle and the torus as the envelope surface

of a moving ball along a circular trajectory. That is, T = Bdr([Br(C(t))), where

C(t) is a circle of radius R. In this case, the C-space obstacle of the cylinder is

bounded by two cylinders (with the same axis, but with two di�erent radii). In the

case of 0 < � < r, we treat the torus as an obstacle and the cylinder as the envelope

surface of a moving ball along a linear trajectory. That is, Y = Bdr([B�(l(t))),

where l(t) is a line. The C-space obstacle of the torus is bounded by two tori (with

the same center and the same major radius, but with two di�erent minor radii:

r � �).

The intersection points between the C-space obstacle and the trajectory of a

moving ball's center provide an e�cient way to classify the topological type of the

TYI curve and construct the TYI curve with all its singularities detected properly.

7.1 The Case of 0 < r � �

Without loss of generality, we may assume that T = Tr;R(0; e3) and Y = Y�(p;N).

Let C = CR(0; e3) denote the main circle of T . The C-space obstacle of the cylinder

Y (with respect to the moving ball Br(C(t)) of radius r) is bounded by �r-o�sets
of the cylinder: i.e., the inner o�set cylinder Y I = Y��r(p;N) and the outer o�set
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cylinder Y O = Y�+r(p;N). When r = �, Y I degenerates into a line l(p;N). Let Y I
�

and Y
I
+ denote the inner and outer open regions (of IR3) that are separated by Y I .

Y
O
� and Y

O
+ are de�ned in a similar way.

When we give the normal orientation of the outer cylinder Y O as outward (i.e.,

into the direction pointing to the open region Y O
+ ), and that of the inner cylinder Y I

as inward (i.e., into the direction pointing to the open region Y I
�), the two cylinders

Y
I and Y

O separate the space IR
3 into three open regions: Y

O
+ , Y O

� \ Y
I
+, and

Y
I
� with the corresponding winding numbers: zero, one, and zero, respectively (See

Figure 7.1).

δ

p

Y

N

δ

δ− r

+ r

YI
−

YI YO

YO
−

p
N

YI
+ YO

+

(a) (b)

Figure 7.1: The cylinder Y = Y�(p;N) and the C-space obstacle of Y with respect

to a ball with radius r.

The number of closed loops in the intersection curve of the cylinder Y and a

sphere S (moving in the torus T ) is determined by the winding number of the region

to which the center of the sphere S belongs. If the center of S is located in the region

with winding number one, Y and S intersect in a single closed loop. If the center of

S is located in the region with winding number zero, Y and S has no intersection.

For an arbitrary point q 2 Y
O
� \Y I

+ (that is, q belongs to the region with winding

number one), the sphere Sr(q) intersects with the cylinder Y in one closed loop, and

the intersection Br(q)\Y is a cylindrical surface patch of disk type. We can classify
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the topological type of a TYI curve by intersecting the main circle of T , C, with the

two cylinders Y I [ Y O based on the above consideration.

The intersection points between C and Y
I [ Y O can be computed e�ciently by

utilizing the following fact:

C \ (Y I [ Y O) � (C \ L(0; e3)) \ (Y I [ Y O) � C \ (L(0; e3) \ (Y I [ Y O));

where L(0; e3) is the main plane of the torus T and contains the circle C. L(0; e3)\
(Y I [Y O) consists of two ellipses or four lines; thus, C\(Y I [Y O) can be computed

e�ciently and robustly by computing circle/ellipse or circle/line intersections.

Let Cn(t), (t0 < t < t1), denote an open connected component of curve C \
(Y O

+ [ Y
I
�). For each t, (t0 < t < t1), Br(Cn(t)) has no intersection with Y ; thus

([Br(Cn(t))) \ Y is an empty set. We can detect all closed loops and singular

points/curves in the TYI curve by computing Bdr([Br(Ci)) \ Y , for each Ci con-

nected component curve of C \ (Y O
� \ Y I

+), where Y
O
� \ Y I

+ denotes the closure of

Y
O
� \ Y I

+, i.e., Y
O
� \ Y I

+ = (Y O
� \ Y I

+)[ (Y O [ Y I). Let Ci denote a closed connected

component curve of C \ Y O
� \ Y I

+.

7.1.1 Analysis for the Case of 0 < r < �

The �gures in the left columns of Figures 7.2, 7.5{7.7 illustrate the relative positions

of C in the C-space of the cylinder Y ; the �gures in the right columns of Figures 7.2,

7.5{7.7 illustrate the corresponding relative con�gurations of T and Y .

Lemma 7.1 If Ci 6= C and Ci has no tangent intersection point with Y
I [ Y

O
,

the intersection curve Bdr([Br(Ci))\Y consists of one single closed loop (see Fig-

ures 7.2(a){(b)).

Proof. To prove this lemma, we use two facts:

1. When q is an end point of Ci, the intersection Br(q)\Y consists of one single

contact point.

2. When q 2 Ci and q is not an end point of Ci, the intersection Br(q) \ Y

consists of a surface patch of disk type.

Since the cylinder can be thought as a torus with in�nite major radius, these facts

are proved by the result in Section 6.2.
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(a)

(b) (c)

Figure 7.2: Regular or singular TYI curves for the case of 0 < r < �.
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We prove this lemma by contradiction. The intersection curve Bdr([Br(Ci))\Y
consists of two or more closed loops if and only if the intersection ([Br(Ci)) \ Y

consists of a surface patch with one or more holes on it, or two or more surface

patches.

Let C(t), t0 � t � t1, denote a parametrization of Ci. When we construct the

intersection ([Br(C(t)))\Y by increasing the parameter t from t0 to t1, let A denote

the intersection ([t0�t<�tBr(C(t))) \ Y which consists of the largest single surface

patch of disk type. Let A0 denote the surface patch Br(C(�t)) \ Br(C(�t � �)) \ Y ,

which is the subpatch of A. Then Br(C(�t)) \ Y can be connected with A only

through the patch A0. Figure 7.3(a) shows examples of A and A0.

First, let's assume that the intersection ([Br(Ci))\Y consists of a surface patch

with one or more holes on it. If the surface patch A [ (Br(C(�t)) \ Y ) contains a

hole on it, Br(C(�t))\Y must be a surface patch of degenerate disk type or a surface

patch of degenerate cylindrical type (see Figure 7.3(b)). This violates given facts.

Second, let's assume that the intersection ([Br(Ci))\Y consists of two or more

surface patches. If the surface patch A [ (Br(C(�t)) \ Y ) consists of two or more

surface patches, Br(C(�t)) \ Y must be an empty set or consists of two or more

surface patches. This also violates given facts.

Thus, we conclude that ([Br(Ci)) \ Y consists of a surface patch of disk type,

and the intersection curve Bdr([Br(Ci)) \ Y ) consists of one single closed loop. ut

A

A

A = A0

A0

A0

(a) (b)

A0

A0

A
A

q
q

A0

A0
A

q

Figure 7.3: [t0�t<�tBr(C(t)) \ Y and Br(C(�t)) \ Y .

� If Ci 6= C and Ci has k tangential intersection points with Y
I[Y O, ([Br(Ci))\

Y consists of (k+1) disk-type surface patches which are connected at k points;
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that is, the intersection curve has singularity at k points (see Figure 7.2(c)).

(a) (b) (d)(c)

Ci

C

C

Ci

q

C

Ci1

Ci2

C

Ci

Y I

Y O

Y I

Y O

Y I

Y O

Y I

Y O

Figure 7.4: CR(0; e3) \ (Y I [ Y O).

Let's assume that Ci intersects with Y
I [ Y

O tangentially at a point q (see

Figure 7.4(a)). If we move C slightly so that Ci is split into two connected compo-

nents Ci1 and Ci2(see Figure 7.4(b)), the intersection curve consists of two closed

loops, Therefore, when Ci intersects with Y
I [ Y

O tangentially at a point q, the

intersection curve has singularity at a point.

Similarly, if Ci has k tangential intersection points with Y
I[Y O, the intersection

curve has singularity at k points. When Ci 6= C, the maximum number of tangential

intersection points between Ci and Y
I [ Y

O is three. In this case, the intersection

curve has three singular points (see Figure 7.4(c)). If Ci is a point, the intersection

curve itself is also a singular contact point (see Figure 7.4(d)).

� When Ci = C and C has k tangential intersection points with Y
I [ Y

O, the

intersection curve T \ Y has k singular points (see Figures 7.5 (a){(b)).

When Ci = C, the maximum number of tangential intersection points in Ci \ Y I is

two, and similarly that of Ci \ Y O is also two. Consequently, the intersection curve

T \ Y may have four singular points at most.

� When Ci = C and C does not intersect with Y
I [ Y O, the intersection T \ Y

consists of two closed loops (see Figures 7.6 (a){(b)).

When C � Y
O
� \ Y

I
+, ([Br(C)) \ Y is a surface patch of cylindrical type. The

intersection curve T \ Y is identical to the boundary curve of ([Br(C))\ Y . Thus,
the intersection curve T \ Y consists of two closed loops.
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(a) (b)

Figure 7.5: The TYI curves for the case of C � Y
O
� \ Y I

+.

(a)

(b)

Figure 7.6: The TYI curves for the case of C � (Y O
� \ Y I

+).
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� When C is embedded in the union Y I [ Y O, the intersection curve consists of

one singular circle.

When C is embedded in Y
I , T is inside Y and touches Y along a singular circle.

When C is embedded in Y
O, T is outside Y and touches Y along a singular circle.

� When C � Y
I
� [ Y O

+ , the intersection T \ Y is an empty set.

When C is in the open region Y I
�[Y O

+ , no ball Br(C(t)) intersects with the cylinder

Y ; thus, in this case, there is no TYI curve in the real, a�ne space.

7.1.2 Analysis for the Case of 0 < r = �

When the minor radius of the torus T and the radius of the cylinder Y are the same,

the inner o�set surface of Y degenerates into a line: Y I = l(p;N). Let C denote

the main circle of T : C = CR(0; e3). When there is no intersection between C and

Y
I , we can apply the same methods as Section 7.1.1. Thus, we consider only the

cases where C intersects with Y
I . C \ Y

I is a circle/line intersection; thus C may

intersect with Y
I at two intersection points at most.

Let Ci denote a connected component of C \ (Y O
� [ Y

O), which intersects with

Y
I . When Ci intersects with Y

I at a point q, the intersection Bdr(Br(Ci))\Y has

singular points which can be computed by intersecting two cross-sectional circles

centered at q on Y and T . These one cross-sectional circle of Y and the other

cross-sectional circle of T are two great circles contained in the same sphere S�(q).

Thus, there are only two cases to consider: either (i) two cross-sectional circles are

coincident or (ii) they intersect at two points.

� When Ci tangentially intersects with Y
I at q, the cross-sectional circle of T

at q intersects with Y in a circle, where each point on the circle is singular.

The intersection curve consists of a singular circle and a singular curve which

intersects with the singular circle at two singular points: q+ �e3 and q� �e3

(see Figure 3.8).

� Otherwise, when Ci transversally intersects with Y
I at k intersection points,

and tangentially intersects with Y
O at l intersection points, the intersection

curve has singularity at 2k + l points (see Figure 7.7).

97



(a) (b)

(c)

(d)

Figure 7.7: The TYI curves for the case of 0 < r = �.
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(e)

(f)

Figure 7.7: (cont.)
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7.1.3 Algorithm: Torus Cylinder Intersection I

Algorithm: Torus Cylinder Intersection I of Appendix A.4 summarizes the TYI

algorithm based on the above case analyses. In this algorithm, we assume that

the following cubic curve tracing routines: Trace Singular TYI Curve(T; Y; P ) and

Trace Regular TYI Curve(T; Y; P ), are available, where T is a torus, Y is a cylin-

der, and P is the set of starting points (exactly one point for each closed loop of

the TYI curve). Each singular intersection curve can be traced starting from its

singular point (see also Piegl [21]), the details of which are given in the routine:

Trace Singular TYI Curve.

To deal with the case in which the closed loops in the TYI curve have no tan-

gent intersection point, a starting point must be generated on each closed loop

of the TYI curve. After that, each curve component is traced using the routine:

Trace Regular TYI Curve. Our implementation of the two curve tracing routines is

based on customizing the general SSI procedures of Choi [4] to the special case of

intersecting a torus with a cylinder (see also Bajaj et al. [1, 3]).

Line (1) computes two starting points by intersecting Y with an arbitrary cross-

sectional circle of T to trace the TYI curve. Line (2) computes the singular points

in the TYI curve. DP includes singular points, if CR(0; e3) intersects with Y
I [Y O

tangentially or CR(0; e3) intersects with Y
I when Y

I = l(p;N). Line (3) traces all

singular curves in the TYI curve starting from the singular points in DP . Lines (4){

(8) compute the starting points for each regular closed loop in the TYI curve.

7.2 The Case of 0 < � < r

Without loss of generality, we may assume that T = Tr;R(0; e3) and Y = Y�(p;N).

In this case, we consider the torus T as an obstacle. The C-space obstacle of the

torus T (with respect to the moving ball B�(l(t)) of radius �) is bounded by the

��-o�sets of the torus: i.e., the inner o�set torus T I = Tr��;R(0; e3) and the outer

o�set torus TO = Tr+�;R(0; e3).

When r + � � R, the outer torus TO self-intersects. Let TD denote the self-

intersected part of TO (see Figures 2.2(b){(c)). (In the case of r + � < R, TO has

no self-intersection; thus we have TD = ;.) Let T I
� and T

I
+ denote the interior and

exterior open regions of IR3 separated by the closed surface T I . T
D
� and T

D
+ are
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de�ned similarly. TO
� and T

O
+ are the open regions separated by the closed surface

T
O n TDo

, where TDo
denotes TD except two vertices of TD.

When we give the normal orientations of the surfaces TO and TD as the outward

directions (i.e., pointing to the regions TO
+ and T

D
+ , respectively) and that of the

surface T
I as the inward direction (i.e., pointing to the region T

I
�), the winding

numbers assigned to the open regions TO
+ and T

I
� are both zero. Moreover, the

winding number assigned to TO
� \ T

I
+ \ T

D
+ is one and that assigned to TD

� is two.

Given a torus and a sphere, when the radius of the sphere is smaller than the

minor radius of the torus, Chapter 6 showed that the number of closed loops in the

torus/sphere intersection is zero, one, and two, when the sphere center is located

in the region of winding number zero, one, and two, respectively. We classify the

topological types of TYI curves by considering the relationship between the winding

number and the number of closed loops in the intersection curve.

7.2.1 Case Analysis

Let l = l(p;N) denote the axis of the cylinder Y . Let TO
� \ T I

+ \ TD
+ denote the

closure of TO
� \T I

+\TD
+ , i.e., TO

� \ T I
+ \ TD

+ = (TO
� \T I

+\TD
+ )[T I[TO, and li denote

a connected component of the intersection l \ T
O
� \ T I

+ \ TD
+ . Each li corresponds

to a certain number of closed loops and/or singular points/curves in the TYI curve.

We can classify all possible types of TYI curves based on the winding numbers of

the open regions in which li is located.

For the case of li \ TD = ;, we classify all possible subcases as follows:

� If li has no tangent intersection point with T I [TO, the intersection curve has

only one closed loop (Figures 7.8(a){(b)).

� If li intersects with T
I[TO at k tangential intersection points, the intersection

curve has singularity at k points (Figures 7.8(c){(d)).

The �gures in the left columns of Figures 7.8, 7.9, 7.12, 7.14 illustrate the relative

positions of l in the C-space of the torus T ; the �gures in the right columns of

Figures 7.8, 7.9, 7.12, 7.14 illustrate the corresponding relative con�gurations of T

and Y .

When li \ T
D = ;, li is located in the region of winding number one. If li has

no tangent intersection point with T I [TO, B�(q)\T forms a surface patch of disk
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(a)

(b)

(c)

(d)

Figure 7.8: Regular or singular TYI curves for the case of 0 < � < r.

102



type, for each point q 2 li except two end points of li, and ([B�(li)) \ T also forms

a surface patch of disk type. If li has k tangential intersection points with T I [ TO,

([B�(li))\T consists of (k+1) surface patches of disk type which are connected at

k points; that is, the intersection curve has singularity at k points.

Let's consider the case where li passes through T
D
� . The number of the inter-

section points between a line and a torus is at most four. When li passes through

T
D
� , li intersects with T

D at two points; thus there can be no tangential intersection

point between li and T
O.

Lemma 7.2

If li\TD
� 6= ; and li has no tangential intersection point with T

I[TO
, the intersection

([B�(li))\T consists of a surface patch of cylindrical type, and the intersection curve

Bdr([B�(li)) \ T consists of two closed loops (see Figure 7.9(a)).

(a)

(b)

Figure 7.9: The TYI curves for the case of li passing through T
D
� .

Proof. To prove this lemma, we show that ([B�(li \ (TD
� [ TD))) \ T consists of a

surface patch of cylindrical type, �rst. Let lj denote a connected component in the

intersection li \ (TD
� [TD) (Figure 7.10(a)). We show that ([B�(lj))\T consists of
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a surface patch of cylindrical type as follows (Figure 7.10(b)). Following two facts

are given by the result in Section 6.2.

1. When q is an end point of lj , the intersection B�(q) \ T consists of a surface

patch of degenerate cylindrical type (Figure 7.10(c)).

2. When q 2 lj and q is not an end point of lj , the intersection B�(q)\T consists

of a surface patch of cylindrical type (Figure 7.10(c)).

Let's assume that ([B�(lj)) \ T consists of two cylindrical-type surface patches.

Then there must be a point q 2 lj , such that B�(q) \ T consists of two cylindrical-

type surface patches or B�(q)\T = ; (Figure 7.11(a)). This violates the given facts.
Let's assume that ([B�(lj)) \ T consists of a surface patch with two or more holes

on it. Then there must be a point q 2 lj , such that B�(q) \ T consists of a surface

patch with two or more holes on it, or B�(q) \ T is a surface patch of disk type

(Figure 7.11(b)). This also violates the given facts. Thus, ([B�(lj))\T is a surface

patch of cylindrical type.

Following two facts are given by the result in Section 6.2.

1. When q is an end point of li, the intersection B�(q) \ T consists of one single

contact point.

2. When q 2 (li n lj) and q is not an end point of li, the intersection B�(q) \ T

consists of a surface patch of disk type.

Let lk denote a connected component in li n lj. Similar to the proof for Lemma 7.1),

we can prove that ([B�(lk)) \ T is a surface patch of disk type, and ([B�(li)) \ T

is a surface patch of cylindrical type. ut

� If li \ T
D
� 6= ; and li has k tangential intersection points with T

I , the inter-

section curve consists of two singular curves, or a closed loop and a singular

curve (with k singular points on it) (see Figure 7.9(b)).

Let's consider the case where li intersects with T
Do

tangentially.

� When li has no tangential intersection point with T
I , the intersection curve

has singularity at a point (Figure 7.12(a)).
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lj

[(B�(lj))

T

(a) (b) (c)

q0

q1

TD

T I

TO

Figure 7.10: lj and ([B�(lj)) \ T .

T

(a) (b)

T

q

Figure 7.11: Contradictions to prove that ([B�(lj)) \ T consists of a surface patch

of cylindrical type.

105



� When li has k tangential intersection points with T
I , the intersection curve

has singularity at k + 1 points (Figure 7.12(b)).

(a)

(b)

Figure 7.12: The TYI curves for the case of li intersecting with T
D tangentially.

Let q denote a vertex of TD (except the case where TD is a point). Let's consider

the case where li passes through q. Let K denote a cone which consists of tangent

lines of cross-sectional circles of TO at q. Figure 7.13 shows the plane section of

T
I[TO[TD by the plane which contains l and z-axis. A line intersects with a torus

at four regular points at most. Thus, if l intersects with TD
� , and l passes through q

(which is a point of multiplicity two), there is no other tangential intersection point

between l and T
O.

� When li is in the inner open region of K, li always passes through T
D
� . If li

has no tangent intersection point with T
I , the intersection curve consists of

two closed loops. If li intersects with T
I at k tangential intersection points,

the intersection curve consists of a closed loop and a singular curve with k

singular points on it (see Figure 7.13(a) and Figure 7.14(a)).

� When li is on the surface of K, li has a tangential intersection point with

T
D. If li has no tangential intersection point with T

I , the intersection curve
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consists of a singular curve (with a singular point on it). If li intersects with

T
I at k tangent intersection points, the intersection curve consists of a singular

curve with k+1 singular points on it (see Figure 7.13(b) and Figure 7.14(b)).

� When li is in the outer region of K, li does not intersect with T
Do
. If li

does not intersect with T
I tangentially, the intersection curve consists of a

singular curve (with two singular points). If li intersects with T
I at k tangent

intersection points, the intersection curve consists of a singular curve with k+2

singular points on it (see Figure 7.13(c) and Figure 7.14(c)).

Let's assume that TD is a point and li passes through T
D. If li is parallel to e3

(i.e., the main plane normal of T ), T \ Y consists of a singular circle. If li is not

parallel to e3 and li has k tangential intersection points with T
I , the intersection

curve consists of a singular curve with k+2 singular points on it (see Figure 7.14(d)).

If li is not parallel to e3 and li has no tangent intersection point with T
I , the

intersection curve consists of a singular curve with two singular points on it.

T
O

T
I

T
D

T
O

T
I

T
D

T
O

T
I

T
D

K

l

li

l

K

li

li

K
l

(a) (b) (c)

Figure 7.13: The cases of li passing through a vertex of TD.

7.2.2 Algorithm: Torus Cylinder Intersection II

Algorithm: Torus Cylinder Intersection II of Appendix A.5 summarizes the TYI al-

gorithm based on the above case analyses. Line (1) computes the singular points/circles

in the TYI curve. Line (2) traces all singular curves in the TYI curve from singular

point set DP . Lines (3){(7) compute regular TYI curves when the trajectory of

the moving ball's center does not pass through T
D
� . If l(p;N) passes through T

D
�
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(a)

(b)

(c)

(d)

Figure 7.14: The TYI curves for the case of li passing through a vertex of TD.
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and jDP j = 0, there are two closed loops in the TYI curve. We can trace these

closed loops from two starting points which are computed by intersecting an arbi-

trary cross-sectional circle of T and Y . Lines (8){(12) compute two regular closed

loops in the TYI curve for this case. If l(p;N) passes through T
D
� and l(p;N) has

a tangent intersection point with T
I , jDP j = 1 and the TYI curve consists of a

singular curve and a closed loop. If l(p;N) passes through T
D
� and l(p;N) has two

tangent intersection points with T I , jDP j = 2. At this time, if the z-values of points

in DP have the same sign, the TYI curve consists of two singular curves. Other-

wise, the TYI curve consists of a singular curve and a closed loop. Line (2) traces

all singular curves starting from the points in DP , and Line (13) traces undetected

closed loops starting from the points in IP .
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Chapter 8

Torus and Cone Intersection

This chapter introduces a method of computing the TKI curve based on a C-space

approach. Given a torus T = Tr;R(p1;N1) and a cone K = K�(p2;N2), the relative

position of the main circle CR(p1;N1) with respect to the cone K determines the

TKI curve. The C-space approach is useful in classifying the relative positions.

We consider the cone K = K�(p2;N2) as an obstacle and the torus T =

Tr;R(p1;N1) as the envelope surface of a moving ball Br(C(t)), where C(t) is

a parametrization of the main circle CR(p1;N1) of the torus T . That is, T =

Bdr([Br(C(t))), where Bdr means the boundary of a closed (volumetric) region in

IR
3. By applying translation and rotation if necessary, we may assume that the torus

T is given in a standard position and orientation; that is, its center is at the origin

and its main circle is contained in the xy-plane: T = Tr;R(0; e3), where 0 = (0; 0; 0)

and e3 = (0; 0; 1). The cone K is in an arbitrary position: K = K�(p;N) (Fig-

ure 8.1(a)).

The C-space obstacle of the cone K (with respect to the moving ball Br(C(t))

of radius r) is bounded by the �r-o�sets of the cone K: that is, the inner o�set

cone K�r;�(p;N) and the outer o�set cone Kr;�(p;N). Let KO denote the outer

o�set cone Kr;�(p;N); that is, Bdr([t�0B�O(t)(lO(t))), where lO(t) = p + tN and

�O(t) = jr+ jjlO(t)jj sin �j, and KB denote the sphere Sr(p) (see Figure 8.1(c)). We

separate the inner o�set cone K�r;�(p;N) into two parts: K
I and K

D. Let KI

denote the cone K�(p + r
sin �

N;N) (see Figure 8.1(d)). Let KD denote the surface

Bdr([0�t� r
sin �

B�D(t)(lD(t))), where lD(t) = p+tN and �D(t) = j�r+ jjlD(t)jj sin �j,
which is the surface K�r;�(p;N) nKI , and K

V denote the apex of KD (i.e., KV =
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p+ r
sin �

N) (see Figure 8.1(e)).

Let KI
� and K

I
+ denote the inner and outer open regions (of IR3) that are sep-

arated by K
I . K

D
� and K

D
+ , K

O
� and K

O
+ , K

B
� and K

B
+ are de�ned in a similar

way. The three cones KI , KD, KO, and a sphere KB separate the space IR3 into

�ve open regions: KO
+ , K

B
� , K

D
� \K

B
+ , K

O
� \K

I
+ \K

D
+ , and K

I
� (Figure 8.1(b)).

Let's consider the sphere S = Sr(q), (q 2 CR(0; e3)), as a moving sphere. When the

sphere S passes through a touching con�guration with the cone K, the number of

closed loops in the cone/sphere intersection curve K \ S increases/decreases. That

is, when the center q of S passes through K
I , KO, KD, or KB, the number of KSI

loops increases/decreases.

The next section classi�es cone/sphere intersection curves by classifying the con-

tainment of the center of the sphere in an open region bounded by three cones and

a sphere. We classify the torus/cone intersection curve based on the classi�cation

of the cone/sphere intersection and the intersection of the moving ball's center tra-

jectory and the C-space obstacle.

8.1 Case Analysis for Cone/Sphere Intersection

This section presents a method to classify the cone/sphere intersection based on a

C-space approach. Given a cone K = K�(p;N) and a sphere S = Sr(q), based on

the relative position of q with respect to K
I , KO, KB, and K

D, we can classify

all possible topological types of the cone/sphere intersection (KSI) curves. The KSI

curve has singularity (i.e., the cone K and the sphere S have a tangential/degenerate

intersection at qK 2 K \ S) if and only if the center q of S is on the boundary of

K
I , KO, KD, or KB . When q is on the boundary sphere of KB, p (i.e., the apex

of K) is included in the KSI curve (see Figure 8.2). When q is on the boundary

surface of KI , KO or KD nKB , qK is an orthogonal projection of q onto the surface

K. Note that q is also the �r-o�set point of qK 2 K (see Figure 8.3).

The �gures in the left columns of Figures 8.5{8.6 illustrate the relative positions

of C in the C-space of cone K; the �gures in the right columns of Figures 8.5{8.6

illustrate the corresponding relative con�gurations of T and K.

For singular KSI intersections, there are four di�erent cases to consider:

1. q 2 K
B: the KSI curve consists of point p (i.e., the apex of K), or a closed

loop with point p on it, or a closed loop and point p (see Figure 8.2).
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Figure 8.1: The cone K = K�(p;N) and the C-space obstacle of K with respect to

a ball with radius r.
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2. q 2 K
D n (KB [KV ): the KSI curve is a quartic space curve with singularity

at qK (Figure 8.3(b)).

3. q 2 K
V : the KSI curve degenerates into a circle (see Figure 8.3(c)).

4. q 2 (KI n KV ) [ (KO n KB): the KSI curve degenerates into a point (see

Figure 8.3(d)).

K
O

p

K
B

p
p

q1

q3

q2

q1

q2

q3

(a) (b) (c) (d)

K

S

S

K K

S

Figure 8.2: Singular KSI curve which includes p.

K
B

q1

q2K
V

q3

q2

q3

(a) (b) (c) (d)

qK

q1

qK

K K K

S

S

S

Figure 8.3: Singular KSI curve which does not include p.

Figure 8.2(a) and Figure 8.3(a) illustrate the relative positions of the center q of

S in the C-space of the cone K; Figures 8.2(b){(d) and Figures 8.3(b){(d) illustrate

the corresponding relative con�gurations of K and S.
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In case 1 considered above, p, (i.e., the apex of K) is on the sphere S; thus,

the KSI curve always contains p. When q is on the surface KB \ K
O, K and S

intersect at point p, and Br(q) \K also consists of point p (Figure 8.2(b)). When

q is on the surface of (KB \ K
D) n KO, the KSI curve consists of a closed loop

with point p on it, and Br(q) \K is a surface patch of disk type with point p on

its boundary (Figure 8.2(c)). When q is on the surface KB n KD, the KSI curve

consists of a closed loop and point p, and Br(q) \K is a surface patch of disk type

(Figure 8.2(d)).

In case 2 considered above, the KSI curve has degree four and the curve has four

branches at the singular point (i.e., at the tangential intersection point of K and

S). In case 3 considered above, the cone and the sphere touch along a degenerate

circle. When we enlarge the radius r of the sphere S slightly, the sphere S will

intersect with the cone K in two di�erent circles. Therefore, the degenerate circle of

Figure 8.3(c) may be considered as the limit of these two converging circles. When

the limiting circle is interpreted as an overlap of two identical circles, the singular

degenerate circle has a total algebraic degree of four. Br(q) \K also consists of a

circle. In case 4 considered above, the sphere touches cone K at a point qK , where

qK is the orthogonal projection of q onto the surface of K.

For regular KSI intersections, there are three di�erent cases to consider:

1. q 2 K
B
� : the KSI curve consists of a closed loop (Figure 8.4(b)).

2. q 2 K
D
� n(KB[KB

� ): the KSI curve consists of two closed loops (Figure 8.4(c)).

3. q 2 (KO
� \K

I
+) n (KD

� [K
D): the KSI curve consists of a closed loop (Fig-

ure 8.4(d)).

Figure 8.4(a) illustrates the relative positions of q in the C-space of cone K;

Figures 8.4(b){(d) illustrate the corresponding relative con�gurations of K and S.

In case 1 considered above, the KSI curve is a closed loop, and Br(q) \K is a

surface of disk type with point p on it. In case 2 considered above, the KSI curve

consists of two closed loops, and Br(q) \K is a surface of cylindrical type. In case

3 considered above, the KSI curve is a closed loop, and Br(q) \ K is a surface of

disk type.
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Figure 8.4: Regular KSI curves

8.2 Case Analysis for TKI Curve

When C is the main circle of T (that is, C = CR(0; e3)), letQ denote the set of points

q 2 C, such that Sr(q)\K includes a tangent/degenerate intersection point/circle.

The TKI curve has singularities if and only if the cross-sectional circle of T at q,

where q 2 Q, intersects with the tangent/degenerate intersection point/circle in

Sr(q) \K. We can detect the singular points in the TKI curve based on a C-space

approach. The TKI curve has singularities if and only if:

1. C has tangent intersections with K
I [KO [KD [KB.

2. C passes through K
V , and the cross-sectional circle of T at KV has tangent

intersection points with K.

The TKI curve is the same as the intersection of Bdr([Br(C)) and K. Let Cn

denote a connected component in C \ (KO
+ [K

I
�). For an arbitrary point q 2 Cn,

Br(q) does not intersect with K; thus, ([Br(Cn)) \ K is an empty set. Due to

the fact that Bdr([Br(Cn)) \ K is an empty set, we can detect the TKI curve

by computing the set of intersection curves in Bdr([Br(Ci)) \ K, where Ci is a

connected component in C n (KO
+ [KI

�).

Let Ci denote a connected component in C n (KO
+ [KI

�). We consider two cases

where Ci \ (KD
� [KD) = ; and Ci \ (KD

� [KD) 6= ;.
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8.2.1 The Case of Ci \ (KD
� [KD) = ;

When Ci \ (KD
� [KD) = ;, we can classify the topological types of the TKI curve

as follows.

� If Ci = C and C is embedded in KI [KO, the intersection curve consists of a

singular circle.

If C is a circle embedded in KI , T is insideK and touches K along a singular circle.

If C is a circle embedded in K
O, T is outside K and touches K along a singular

circle.

� If Ci 6= C and Ci has no tangent intersection point with K
I [KO, the inter-

section curve consists of a closed loop (see Figure 8.5(a)).

When Br(q) moves along the center trajectory Ci, for each point q 2 Ci, Br(q)\
K consists of a disk-type surface patch or one single contact point. ([Br(Ci))\K is a

surface patch of disk type (Refer to Lemma 7.1 in Section 7.1.1), and Bdr([Br(Ci))\
K consists of a closed loop.

Let q0 denote an end point of Ci, and qK denote a point on K at which Sr(q0)

touches K. We can trace the closed loop Bdr([Br(Ci)) \K from the closest point

from qK in the set of intersection points between T and the pro�le line of K which

passes through qK .

� If Ci 6= C and Ci has k tangent intersection points with K
I [ K

O, the in-

tersection curve consists of a singular curve with k singular points on it (see

Figures 8.5(b){(c)).

For all q 2 Ci, each surface patch Br(q)\K is of disk type except the case where

q is a tangent intersection point of Ci and K
I [K

O. ([Br(Ci)) \K is a sequence

of disk-type surface patches which are connected at k points. Bdr([Br(Ci)) \ K

consists of a singular curve with k singular points on it. From k singular points, we

can trace the singular curve.

� If Ci = C and Ci \ (KI [ K
O) has k tangent intersection points, the inter-

section curve consists of a singular curve with k singular points on it (see

Figures 8.5(d){(e)).
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(a)

(b)

(c)

Figure 8.5: The TKI curves for the case of Ci \ (KD
� [KD) = ;
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(d)

(e)

Figure 8.5: (cont.)
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For all q in Ci, Br(q)\K is a surface patch of disk type except the case where q

is a tangent intersection point of Ci and K
I [KO. When q is a tangent intersection

point of Ci and K
I [ K

O, Br(q) \ K consists of a singular point, and the cross-

sectional circle of T at q intersects with the singular point. Thus, ([Br(Ci)) \K

is a sequence of disk-type surfaces connected by k singular points, and whose whole

shape is cylindrical. Bdr([Br(Ci)) \K consists of a singular curve with k singular

points on it. The TKI curve is traced from the singular points on it.

� If Ci = C and Ci has no tangent intersection point with K
I [KO, the inter-

section curve consists of two closed loops (see Figure 8.6).

For all q 2 Ci, the surface patch Br(q) \ K is of disk type. Due to the fact

that Ci = C, ([Br(Ci)) \ K consists of a surface patch of cylindrical type. The

boundary of the surface patch of cylindrical type consists of two closed loops; thus,

Bdr([Br(C)) \ K (that is, T \ K) consists of two closed loops. In this case, an

arbitrary cross-sectional circle of T intersects with K at two points. From these two

intersection points, we can trace the TKI curve.

8.2.2 The Case of Ci \ (KD
� [KD) 6= ;

When Ci \ (KD
� [ K

D) 6= ;, we split the circular arc Ci into the set of circular

arcs and/or points according to the regions in which Ci is located. For each split

component Cj in Ci, we compute ([Br(Cj)) \K, and by merging them, construct

([Br(Ci)) \ K. From the topological type of ([Br(Ci)) \ K, we can construct

Bdr([Br(Ci)) \ K which is a subset of the TKI curve. Ci is split into connected

components as in: (i) Ci \ (KD
� [K

D), and (ii) Ci n (KD
� [K

D). When Ci passes

through K
V , more careful consideration is needed to classify the topological types

of Bdr([Br(Ci)) \K than other cases of Ci. Before classifying the types of Ci, we

consider the cases where Ci passes through K
V �rst.

We classify the cases where Ci passes through K
V as follows. When Cj is a

connected component in Ci \ (KD
� [K

D), Cj can be a point KV or a circular arc

in K
D
� [KD which passes through K

V . Let l denote the tangent line of Ci at K
V .

When l intersects with K
D tangentially along a pro�le line of KD, there is one

intersection point between the cross-sectional circle of T at KV and Br(K
V ) \K.

The intersection point is a singular point in the TKI curve (see Figures 8.7(a){

(b) and Figures 8.8(a){(b)). When l passes through K
I
�, there is no intersection
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(a)

(b)

Figure 8.6: The TKI curves for the case of C \ (KO
� \KI

+ \KD
+ ) = C
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Figure 8.7: The cases of Ci passing through K
V .

between the cross-sectional circle of T at KV and Br(K
V ) \ K (see Figure 8.7(c)

and Figure 8.8(c)). When l passes through the region KO
� \KI

+\KD
+ , there are two

intersection points between the cross-sectional circle of T atKV and Br(K
V )\K (see

Figure 8.7(d) and Figure 8.8(d)). In this case, two intersection points are singular

points in the TKI curve, and each singular point has four branches.

The �gures in the left columns of Figure 8.8 illustrate the relative positions of C

in the C-space of the cone K; the �gures in the right columns of Figure 8.8 illustrate

the corresponding relative con�gurations of T and K.

Let Cj denote a connected component in Ci \ (KD
� [KD). Cj \KD includes a

tangent intersection point in two cases: one case where Cj intersects with K
D nKV
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(a)

(b)

Figure 8.8: The TKI curves for the case of Ci passing through K
V
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(c)

(d)

Figure 8.8: (cont.)
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tangentially and the other case where Cj intersects with K
V tangentially. When Cj

passes throughKV and the tangent line of Cj at K
V intersects withKD tangentially

along a pro�le line of KD, we de�ne that Cj intersects with K
V tangentially. Under

this de�nition, we consider the seven types of Cj :

1. Cj is a point on K
D (Figures 8.2(b){(c), and Figures 8.3(b){(c)).

2. Cj \KB
� 6= ; and Cj intersects with K

D tangentially (Figures 8.9(a){(b)).

3. Cj \ K
B
� 6= ; and Cj \ K

D does not include any tangent intersection point

(Figure 8.9(c)).

4. Cj intersects withK
B tangentially, and Cj\KD includes a tangent intersection

point (Figures 8.9(d){(e)).

5. Cj intersects with K
B tangentially, and Cj \KD does not include any tangent

intersection point (Figure 8.9(f)).

6. Cj\KB = ; and Cj\KD includes a tangent intersection point (Figures 8.9(g){

(h)).

7. Cj \ K
B = ; and Cj \ K

D does not include any tangent intersection point

(Figure 8.9(i)).

There are four cases where Cj can be a point onK
D. If Cj is a point onK

B\KD,

Br(Cj) \K is the apex of K (Figure 8.2(b)). If Cj is a point on (KB \KD) nKO,

Br(Cj)\K is a singular curve which contains the apex of K on it (Figure 8.2(c)). If

Cj is a point on K
D nKB, Br(Cj)\K is a singular curve with a singular point on it

(Figure 8.3(b)). If Cj is a point onK
V , Br(Cj)\K is a singular circle (Figure 8.3(c)).

When Cj \KB 6= ; and Cj \ (KD nKV ) includes a tangent intersection point q,

([Br(Cj)) \K is a surface patch of disk type, and Bdr([Br(Cj)) \K consists of a

closed loop (boundary curve of the disk-type surface), and a singular point (which

is the tangent intersection point of K and a cross-sectional circle of T at q) (see

Figure 8.9(a)). If Cj intersects with K
V tangentially, Bdr([Br(Cj)) \K consists

of a singular curve with a singular point on it (see Figure 8.9(b)). The singular

point is a tangent intersection point of K and a cross-sectional circle of T at KV .

When Cj \K
B 6= ; and Cj \K

D does not include any tangent intersection point,
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([Br(Cj))\K is a surface patch of disk type. Bdr([Br(Cj))\K consists of a closed

loop (see Figure 8.9(c)).

When Cj intersects withK
B tangentially and Cj\(KD nKV ) includes a tangent

intersection point q, ([Br(Cj)) \K is a disk-type surface, and Bdr([Br(Cj)) \K

consists of a closed loop (boundary curve of the disk-type surface), the apex of K,

and a singular point, which is the tangent intersection point ofK (see Figure 8.9(d)).

If Cj intersects with K
V tangentially, Bdr([Br(Cj)) \K consists of the apex of K

and a singular curve with a singular point on it (see Figure 8.9(e)). The singular

point is a tangent intersection point of K and a cross-sectional circle of T at KV .

When Cj intersects withK
B tangentially, and Cj\KD does not include any tangent

intersection point, ([Br(Cj))\K is a surface patch of disk type, and Bdr([Br(Cj))\
K consists of a closed loop and the apex of K (see Figure 8.9(f)).

When Cj \KB = ; and Cj \ (KD nKV ) includes a tangent intersection point q,

([Br(Cj)) \K is a cylindrical-type surface, and Bdr([Br(Cj)) \K consists of two

closed loops (boundary curve of the cylindrical-type surface) and a singular point,

which is the tangent intersection point of K and a cross-sectional circle of T at q (see

Figure 8.9(g)). If Cj intersects with K
V tangentially, Bdr([Br(Cj)) \K consists

of a closed loop and a singular curve with a singular point on it (see Figure 8.9(h)).

The singular point is a tangent intersection point of K and a cross-sectional circle of

T at KV . When Cj\KB = ; and Cj\KD does not include any tangent intersection

point, ([Br(Cj)) \K is a cylindrical-type surface, and Bdr([Br(Cj)) \K consists

of two closed loops (see Figure 8.9(i)).

Let Ck denote a connected component in Ci n (KD
� [ K

D). Then we consider

three types of Ck:

1. Ck is a circular arc which has no tangent intersection point with K
I [ K

O

(Figures 8.10(a){(b)).

2. Ck is a circular arc which has m (m > 0) tangent intersection points with

K
I [KO (Figures 8.10(c){(d)).

When Ck is a circular arc which has m (m > 0) tangent intersection points with

K
I [ K

O, ([Br(Ck)) \ K consists of several disk-type surface patches which are

connected by m points. When Ck is a circular arc which has no tangent intersection

point with K
I [KO, ([Br(Ck)) \K consists of a surface patch of disk type.
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Figure 8.9: ([Br(Cj)) \K for the connected component Cj in Ci \ (KD
� [KD)
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Figure 8.10: ([Br(Ck)) \K for the connected component Ck in Ci n (KD
� [KD)
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Let Cj denote a connected component in Ci \ (KD
� [ K

D), and Ck denote a

connected component in Ci n (KD
� [ K

D). We classify the topological types of

the intersection curve Bdr([Br(Ci)) \ K according to the number of connected

components in Ci \ (KD
� [ K

D) and the connection type between Cjs and Cks.

Figure 8.11 classi�es the topological types of ([Br(Cj)) \K as Types (A) to (I).

(A) (B) (C) (D) (E) (F) (G) (H) (I)

Figure 8.11: The topological types of ([Br(Cj))\K for a connected component Cj

in Ci \ (KD
� [KD)

When the number of connected components in Ci \ (KD
� [ K

D) is one, there

are two cases: Ci 6= C, or Ci = C. If Ci 6= C, Cj can be connected with one or

two Cks. When Ck does not have any tangent intersection point with K
I [ K

O,

the topological types of surface patches ([Br(Cj))\K and ([Br(Cj [Ck))\K are

the same. We show examples for the case of the number of connected components

in Ci \ (KD
� [ K

D) is one and Ci 6= C in Figure 8.12. Figure 8.12(a) shows the

case where the [Br(Cj) of Type (F) is connected with two surface patches of disk

type ([Br(Ck1)) [ K and ([Br(Ck2)) [ K, where an end point of Ck1 is on K
D

and the other end point is on K
I , and an end point of Ck2 is on K

D and the other

end point is on K
I . Thus, the topological type of ([Br(Cj [ Ck1 [ Ck2)) \ K is

same as that of ([Br(Cj)) \K. Figure 8.12(b) shows the case where the [Br(Cj)

of Type (H) is connected with two surface patches of disk type ([Br(Ck1))\K and

([Br(Ck2)) \K, where an end point of Ck1 is on K
D and the other end point is on

K
I , and an end point of Ck2 is on K

D and the other end point is on K
I . Thus, the

topological type of ([Br(Cj [ Ck1 [ Ck2)) \K is same as that of ([Br(Cj)) \K.

When Ck has m tangent intersection points with K
I [ K

O, there are m singular

points in Bdr([Br(Ck)) \K, and ([Br(Cj [ Ck)) \K has m more singular points

than ([Br(Cj)) \K.

If Ci = C, Cj can be connected with one Ck which touches KD at both end

points. At this time, the topological type of surface patch ([Br(Cj [ Ck)) \ K
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is di�erent from ([Br(Cj)) \K. When Ci has no tangent intersection point with

K
I [ K

O, a closed loop is added. Figure 8.12(c) shows the case when Ci (such

that Ci = C) consists of Cj and Ck, where ([Br(Cj)) \ K is a surface patch of

Type (F) and Ck has no tangent intersection point with KI [KO. When Ci has m

tangent intersection points with KI [KO, one of the closed loops in ([Br(Cj))\K
is replaced by a singular curve with m singular points on it. Figure 8.12(d) shows

the case when Ci (such that Ci = C) consists of Cj and Ck, where ([Br(Cj))\K is a

surface patch of Type (H) and Ck has one tangent intersection point with KI [KO.

When the number of connected components in Ci \ (KD
� [ K

D) is two, the

connection types of two components are classi�ed in Figure 8.13. Two connected

components in Ci \ (KD
� [K

D) are connected by two or three components in Ci n
(KD

� [KD). When a component Ck � Cin(KD
� [KD) connects two components Cj1

and Cj2 (which are two connected components in Ci \ (KD
� [KD)), the topological

types of ([Br(Cj1)) \K and ([Br(Cj2)) \K are merged into ([Br(Ci)) \K. The

boundary curves of ([Br(Ci))\K are detected from the set of singular points, and

by subdividing T at the cross-sectional circle of T at the middle point on circular

arc Ck, and by subdividing K at an arbitrary pro�le line.

Figure 8.14 shows examples of the connection types between two connected com-

ponents of Type (D) and Type (F) in Ci \ (KD
� [KD). In Figure 8.14(a), there are

two connected components Cj1 and Cj2 in Ci\ (KD
� [KD), where ([Br(Cj1))\K is

of Type (D) and ([Br(Cj2)) \K is of Type (F). Figures 8.14(b){(f) show the cases

where Cj1 and Cj2 are connected with Cks of various types. Figure 8.15 show the

corresponding TKI curves.

8.3 Algorithm: Torus Cone Intersection

Previous sections classi�ed the topological types of the TKI curve based on a C-

space approach. Algorithm: Torus Cone Intersection of Appendix A.6 summarizes

the TKI algorithm based on the above case analyses. In this algorithm, we as-

sume that cubic curve tracing routines: Trace Singular TKI Curve (T , K, DP ) and

Trace Regular TKI Curve (T , K, IP ), are available, where T is a torus and K

is a cone, and DP , IP are a set of singular points and a set of starting points,

respectively. Each singular intersection curve can be traced starting from its sin-

gular point (see also Piegl [21]), the details of which are given in the routine:

129



(a)

(b)

Figure 8.12: The TKI curves for the case of one connected component in Ci\ (KD
� [

K
D).
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(c)

(d)

Figure 8.12: (cont.)

131



(D) (E) (F) (G) (H)

(F) (H) (I)

Figure 8.13: Possible pairs of types of ([Br(Cj)) \ K, where Cj is a connected

component in Ci \ (KD
� [KD).

Trace Singular TKI Curve. We assume that when a singular curve is traced, if

the singular curve passes through a point in the set IP , the point is removed from

IP .

In Line (1), we assume that the routine Detect Circles in TKI(T , K), which

detects and computes all degenerate circles in the TKI curve is available (See

Chapter 3). Line (2) computes starting points of two closed loops when C is in

K
O
� \KI

+ \KD
+ . By intersecting an arbitrary cross-sectional circle of T with K, the

starting points are computed. Line (3) computes a starting point for a closed loop

which corresponds to a connected component Ci such that Ci � C\(KO
� \KI

+), and

Ci\ (KD
� [KD) 6= ;. When q is an end point of Ci, and qK denotes a point on K at

which Sr(q) touches K, let l denote a pro�le line of K which passes through qK . We

can trace the closed loop Bdr([Br(Ci)) \K from the closest point from qK in the

set of intersection points between T and l. Line (4) computes the starting points for

the closed loop which corresponds to a connected component Ci � K
O
� \KI

+, where

Ci \ (KD
� [KD) 6= ;. Line (5) computes the starting points for closed loops, where

each closed loop corresponds to Ck which is a connected component in K
O
� \K

I
+,

and whose both end points are on K
D. By intersecting the cross-sectional circle of

T at the middle point of Ck with K, the starting points are computed. In Line (6),

all singular curves in the TKI curve are traced from DP which is a set of all singular
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Figure 8.14: The connection types of two connected components in Ci\ (KD
� [KD)
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(a)

(b)

Figure 8.15: The TKI curves for the case of two connected components in Ci\(KD
� [

K
D).
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(c)

(d) (e)

Figure 8.15: (cont.)
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points in the TKI curve. In Line (7), all closed loops in the TKI curve are traced

from IP which is a set of starting points in the TKI curve.
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Chapter 9

Torus and Torus Intersection

Given two tori T1 = T�;�(p1;N1) and T2 = Tr;R(p2;N2), we consider the torus with

larger minor radius as an obstacle. Without loss of generality, we may assume that

0 < r � �. That is, we treat the torus T1 as an obstacle and the torus T2 as the

envelope surface of a moving ball along a circular trajectory: T2 = Bdr([Br(C(t))),

where C(t) is a circle of radius R. By applying translation and rotation if necessary,

we may assume that the torus T1 is in the standard position and orientation: T1 =

T�;�(0; e3), and the torus T2 is in an arbitrary position and orientation: T2 =

Tr;R(p;N).

We compute the C-space obstacle of the torus T1 with respect to the moving

ball with radius r. The C-space obstacle of T1 is bounded by the �r-o�sets of

T1: i.e., the inner o�set torus T I = T��r;R(0; e3) and the outer o�set torus TO =

T�+r;R(0; e3). When � + r � R, the outer torus TO self-intersects. Let TD denote

the self-intersected part of TO (see Figures 2.2(b){(c)). (In the case of �+r < R, TO

has no self-intersection; thus we have TD = ;.) Let T I
� and T

I
+ denote the interior

and exterior open regions of IR3 separated by the closed surface T I . TD
� and TD

+ are

de�ned similarly. TO
� and T

O
+ are the open regions separated by the closed surface

T
O n TDo

, where TDo
denotes TD except two vertices of TD.

When we give the normal orientations of the surfaces TO and TD as the outward

directions (i.e., pointing to the regions TO
+ and T

D
+ , respectively) and that of the

surface T
I as the inward direction (i.e., pointing to the region T

I
�), the winding

numbers assigned to the open regions TO
+ and T

I
� are both zero. Moreover, the

winding number assigned to TO
� \ T I

+ \ TD
+ is one and that assigned to TD

� is two.
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Section 6.2 classi�ed the topological type of the intersection curve of a torus and

a sphere according to the relative position of the sphere center with respect to the

C-space obstacle of the torus. Given a sphere and a torus, where the radius of the

sphere is smaller than or equal to the minor radius of the torus, the number of closed

loops in the torus/sphere intersection is zero, one, and two, when the sphere center

is contained in the region of the C-space with winding number zero, one, and two,

respectively.

Let q denote a point on the main circle of T2. For q 2 T
O
� \ T I

+ \ TD
+ (that is, q

belongs to the region of winding number one), the sphere Sr(q) intersects with T1 in

one closed loop, and the surface patch Br(q) \ T1 � T1 is of disk type. For q 2 T
D
�

(that is, q belongs to the region of winding number two), the sphere Sr(q) intersects

with T1 in two closed loops, and the surface patch Br(q) \ T1 is of cylindrical type.
For q 2 T

O
+ [ T

I
� (that is, q belongs to the region of winding number zero), the

sphere Sr(q) has no intersection with T1. If q 2 T
I [ TO (that is, the boundary of

the C-space obstacle), the intersection curve Sr(q) \ T1 consists of a singular curve

or a singular point. Based on this classi�cation and the intersection of the C-space

obstacle and the trajectory of the moving ball's center, we can classify all possible

topological types of the closed loops and/or singular curves in the TTI curve.

The C-space obstacle consists of two tori, and the trajectory of the moving ball's

center forms a circle; thus we can compute the intersection between the C-space

obstacle and the trajectory circle by a torus/circle intersection. Torus/circle inter-

section is computed by solving a fourth order polynomial equation (see Appendix B).

Let C denote the main circle of T2: C = CR(p;N), and Q denote the set:

Q = fq 2 C j Sr(q)\T1 has a tangent intersection point/circle g. The TTI curve has
singularities if and only if the cross-sectional circle of T1 at q 2 Q, intersects with the

tangential intersection point/circle of Sr(q)\ T1. We can detect the singular points

in the TTI curve based on a C-space approach. The TTI curve has singularities if

and only if one of the following conditions holds:

1. C has tangent intersections with T
I [ TO.

2. C passes through a vertex of TD and the cross-sectional circle of T2 at the

vertex intersects with T1.

3. C intersects with T
I , when 0 < r = �.
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The TTI curve is the same as the intersection of Bdr([Br(C)) and T1. Let Cn

denote a connected component in C \ (TO
+ [ T

I
�). For an arbitrary point q 2 Cn,

Br(q) does not intersect with T1; thus, ([Br(Cn)) \ T1 is an empty set. Due to the

fact that Bdr([Br(Cn))\T1 is the subset of ([Br(Cn))\ T1, Bdr([Br(Cn))\T1 is
an empty set.

We detect all closed loops and singular points/curves in the TTI curve by com-

putingBdr([Br(Ci))\T1, for all Ci which is a connected component in Cn(TO
+ [T I

�).

Let C denote the main circle of the torus T2 (i.e., C = CR(p;N)) and Ci denote a

connected component in C \ ((TO
� \ T I

+) [ T I [ TO). First, we consider the case of

0 < r < �, and then we consider the case of 0 < r = �.

9.1 Analysis for the Case of 0 < r < �

We consider two cases of Ci \ (TD
� [ TD) = ; and Ci \ (TD

� [ TD) 6= ; separately.

9.1.1 The Case of Ci \ (TD
� [ TD) = ;

The �gures in the left columns of Figure 9.1 illustrate the relative positions of C in

the C-space of the torus T1; the �gures in the right columns of Figure 9.1 illustrate

the corresponding relative con�gurations of T1 and T2.

� If Ci 6= C and Ci does not have any tangent intersection point with T
I [ TO,

([Br(Ci)) \ T1 consists of a surface patch of disk type, and the intersection

curve consists of one closed loop (see Figures 9.1(a){(b)).

This can be proved in a similar way of proving Lemma 7.1 in Section 7.1.1.

� If Ci 6= C and Ci has k tangent intersection points with T
I[TO, ([Br(Ci))\T1

consists of several disk-type surface patches which are connected by k singular

points, and the intersection curve consists of a singular curve with k singular

points on it(see Figure 9.1(c)).

Let's assume that Ci intersects with T
I [ T

O tangentially at a point q. If we

move C slightly for Ci to be split into two connected components Ci1 and Ci2 ,

Bdr([Br(Ci1)) \ T1 consists of a closed loop, and Bdr([Br(Ci2)) \ T1 consists of

another closed loop. If Ci1 and Ci2 meet at a point on T
I [ T

O, two closed loops
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Bdr([Br(Ci1))\T1 and Bdr([Br(Ci2))\T1 are merged into a singular curve. When

Ci intersects with T
I [ T

O tangentially at a point q, Bdr([Br(Ci)) \ T1 consists

of a singular curve with a singular point (which is the intersection point of T1 and

the cross-sectional circle of T2 at q) on it. Similarly, if Ci has k tangent intersection

points with T I [TO, Bdr([Br(Ci))\T1 consists of a singular curve with k singular

points on it.

� If Ci = C and Ci consists of k tangent intersection points with T
I[TO, T1\T2

has a singular curve with k singular points (see Figure 9.1 (d)).

When Ci = C, the maximum number of the tangent intersection points in Ci \ T
I

is two, and that of Ci \ T
O is two; thus, T1 \ T2 can have a singular curve with a

maximum of four singular points on it.

� If Ci = C and Ci does not intersect with T
I [TO, T1\T2 has two closed loops

(see Figure 9.1(e)).

When Ci = C and C � T
O
� \T I

+\TD
+ , ([Br(Ci))\T1 is a surface patch of cylindrical

type. Bdr([Br(Ci)) \ T1, that is, T2 \ T1, is identical to the boundary curve of

([Br(Ci)) \ T1; thus T2 \ T1 consists of two closed loops.

� If Ci = C and Ci is embedded in T I [ TO, T1 \ T2 consists of a singular circle
or a singular curve.

Ci is embedded in T
I (or TO) if and only if Ci is a pro�le circle or a cross-

sectional circle or an Yvone-Villarceau circle of T I (or TO). When Ci is a pro�le

circle of T I , T2 is inside T1, and T2 intersects with T1 tangentially along a pro�le

circle of T1. When Ci is a pro�le circle of TO, T2 is outside T1, and T2 intersects

with T1 tangentially along a pro�le circle of T1.

When Ci is a cross-sectional circle of T I , T2 is inside T1, and T2 intersects with

T1 tangentially along a cross-sectional circle of T1. If Ci is a cross-sectional circle of

T
O, T1 is outside T1, and T2 intersects with T1 tangentially along a cross-sectional

circle of T1.

When Ci is an Yvone-Villarceau circle of T I , T2 is inside T1, and T2 intersects

with T1 tangentially along a singular quartic curve. When Ci is an Yvone-Villarceau

circle of TO, T2 is outside T1, and T2 intersects with T1 tangentially along a singular

quartic curve.

140



(a)

(b)

(c)

Figure 9.1: The TTI curves for the case of Ci \ (TD
� [ TD) = ;.
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(d)

(e)

Figure 9.1: (cont.)
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9.1.2 The Case of Ci \ (TD
� [ TD) 6= ;

When Ci \ (TD
� [ TD) 6= ;, we split the circular arc Ci into the set of circular arcs

and/or points according to the region Ci passes through. Ci is split into connected

components as in: (i) Ci \ (TD
� [ T

D), and (ii) Ci n (TD
� [ T

D). Let Cj denote a

connected component in Ci \ (TD
� [ TD), and Ck denote a connected component in

Ci n (TD
� [ T

D). We classify the possible topological types of ([Br(Cj)) \ T1 and

([Br(Ck)) \ T1. The topological types of the intersection curve Bdr([Br(Ci)) \ T1
are classi�ed according to the combination of topological types of ([Br(Cj)) \ T1

and ([Br(Ck)) \ T1.
We consider three types of Cj:

1. Cj is a point on T
D (see Figures 9.2(a){(b)).

2. Cj is a circular arc which intersects with TD tangentially (see Figures 9.2(c){

(d)).

3. Cj is a circular arc which does not intersect with T
D tangentially (see Fig-

ures 9.2(e){(f)).

The �gures in the left columns of Figures 9.2, 9.4{9.11, and 9.13{9.20 illustrate

the relative positions of Cj or Ci in the C-space of the torus T1; the �gures in the

right columns of Figures 9.2, 9.4{9.11, and 9.13{9.20 illustrate the corresponding

relative con�gurations of ([Br(Cj)) \ T1 or ([Br(Ci)) \ T1.
There are two cases where Cj can be a point on TD. If Cj is a point on a vertex

of TD, Sr(Cj)\T1 is a singular circle (Figure 9.2(a)). If Cj is a point on T
Do

(where

T
Do

denotes TD except two vertices of TD), Sr(Cj) \ T1 is a singular curve with a

singular point on it (Figure 9.2(b)).

We de�ne the tangent intersection of Cj and T
D as two cases: (i) Cj intersects

with T
Do

tangentially, and (ii) Cj passes through q (which is a vertex of TD) and

there is a tangent line of a cross-sectional circle of TO at q which is colinear with the

tangent line of Cj at q. When Cj is a circular arc and Cj intersects with T
Do

tangen-

tially, ([Br(Cj)) \ T1 is a surface patch of cylindrical type, and Bdr([Br(Cj)) \ T1
consists of a singular point and two closed loops (Figure 9.2(c)). When Cj intersects

with a vertex of TD tangentially, ([Br(Cj)) \ T1 is a surface patch of cylindrical

type, and Bdr([Br(Cj)) \ T1 consists of a singular curve (with a singular point on

it) and a closed loop (Figure 9.2(d)).
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(a)

Cj

Br(Cj)

[Br(Cj)

Cj

Cj

Cj

Cj

Cj

Figure 9.2: Types of Bdr([Br(Cj)) \ T1, where Cj is a connected component in

Ci \ (TD
� [ TD).
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When Cj is a circular arc and Cj does not intersect with T
D tangentially,

Br(q) \ T1 (q 2 Cj) is a surface patch of cylindrical type or degenerate cylin-

drical type. ([Br(Cj))\ T1 is equivalent to [q2Cj (Br(q) \ T1), and ([Br(Cj)) \ T1
is a surface patch of cylindrical type (Figures 9.2(e){(f)). Compare Figure 9.2(f)

with Figure 9.2(d). Figure 9.2(f) shows the case when Cj passes through a ver-

tex of TD, but Cj does not intersect with the vertex tangentially. In this case,

Bdr([Br(Cj)) \ T1 does not include a singular point.
When Ck is a connected component in Ci n (TD

� [ TD), we consider two types of

Ck:

� (Type 1) Ck is a circular arc whose one end point is on (T I [ TO) n TD.

� (Type 2) Ck is a circular arc whose end points are on T
D.

When Cj denotes a connected component in Ci \ (TD
� [ T

D), ([Br(Cj)) \ T1

has one of topological types : Type I, Type II, Type III, Type IV, and Type V

(Figure 9.3). The topological type of ([Br(Ci))\T1 is classi�ed by the combination

of Cj (of Types I{V) and Ck (of Types 1,2).

Type IV Type VType I Type II Type III

Figure 9.3: Types of Bdr([Br(Cj)) \ T1, where Cj is a connected component in

Ci \ (TD
� [ TD).

When the number of connected components in Ci\(TD
� [TD) is one, let's consider

the case when Cj has Type V. Let's assume that Ck has no tangent intersection with

T
I[TO. When both end points of Cj are connected to Ck of Type 1, ([Br(Ci))\T1 is

a surface patch of cylindrical type. In this case, the topological type of ([Br(Ci))\
T1 is inherited from that of ([Br(Cj)) \ T1, and Bdr([Br(Ci)) \ T1 consists of

two closed loops (Figure 9.4(a)). When Ck of Type 2 is added to Cj, Cj [ Ck

is C. In this case, if the main circle of T1 (C�(0; e3)) passes through the inner

area of C, Bdr([Br(C)) \ T1 consists of a closed loop (Figure 9.4(b)). Otherwise,

Bdr([Br(C)) \ T1 consists of three closed loops (Figure 9.4(c)).
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Let's assume that Ck has m (m � 1) tangent intersection points with T
I [ T

O.

Then Bdr([Br(Ck)) \ T1 includes m singular points. When both end points of

Cj are connected to Ck of Type 1, ([Br(Ci)) \ T1 is the union of a surface patch

of cylindrical type and several surface patches of disk type which are connected

by m singular points. Bdr([Br(Ci)) \ T1 consists of either (i) one singular curve

and one closed loop, or (ii) two singular curves (Figure 9.4(d)). If Ck of Type 2 is

added to Cj , Cj [ Ck is C. When the main circle of T1 passes through the inner

area of C, Bdr([Br(C))\ T1 consists of a singular curve (Figure 9.4(e)), otherwise,
Bdr([Br(C)) \ T1 consists of a singular curve and a closed loop (Figure 9.4(f)).

For the Cj of Type V, Figure 9.5 presents the examples of TTI Curves. Fig-

ures 9.5(a){(b) show the TTI curves when Cj of Type V is connected with two

Cks of Type 1. In this case, Bdr([Br(Ci)) \ T1 consists of two closed loops. Fig-

ures 9.5(c){(e) show the TTI curves when Cj of Type V is connected with a Ck of

Type 2. When the main circle of T1 passes through the inside area of C, the TTI

curve consists of a closed loop (Figure 9.5(c)). When the main circle of T1 does

not pass through the inside area of C, the TTI curve consists of three closed loops

(Figures 9.5(d){(e)).

Figures 9.6{9.9 show ([Br(Ci))\T1, when Ci includes Cj of Type I, II, III, and

IV, respectively.

Figure 9.10 presents the TTI curves when Cj of Type I is included in Ci. When

two Cks are connected with Cj , Bdr([Br(Ci))\T1 consists of a singular curve with
two singular points on it. In this case, the singular points are intersection points of

T1 and the cross-sectional circle of T2 at Cj (Figure 9.10(a)). Figure 9.10(b) shows

the case when Cj is connected with two Cks of Type 1, where each Ck has a tangent

intersection point with T
I . If Cj is of Type I and C is tangent to TD at Cj , there

can be only one Ck which is connected to Cj. In this case, Bdr([Br(Ci)) \ T1

consists of a singular curve with one singular point on it, and this singular point is

an intersection point of T1 and the cross-sectional circle of T2 at Cj (Figure 9.10(c)).

Figure 9.11(a) shows the case when Cj of Type II is connected with two Cks

of Type 1. In this case, Bdr([Br(Ci)) \ T1 consists of a singular curve with a

singular point on it. Figure 9.11(b) shows the case when Cj of Type III is connected

with one Ck of Type 2. In this case, Ck has a tangent intersection point with T
I ;

thus Bdr([Br(Ci)) \ T1 consists of a singular point and a singular curve with a

singular point on it. If Ck does not have a tangent intersection point with T I [ TO,
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TD

T I

TO T1

Figure 9.4: Bdr([Br(Cj [ Ck)) \ T1 for Cj of Type V.
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(a)

(b)

Figure 9.5: The TTI curves when a Cj of Type V is in Ci.

148



(c)

(d)

(e)

Figure 9.5: (cont.)
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Figure 9.6: Bdr([Br(Ci)) \ T1, where Ci includes a Cj of Type I
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Figure 9.7: Bdr([Br(Ci)) \ T1, where Ci includes a Cj of Type II
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Figure 9.8: Bdr([Br(Ci)) \ T1, where Ci includes a Cj of Type III
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Figure 9.9: Bdr([Br(Ci)) \ T1, where Ci includes a Cj of Type IV

Bdr([Br(Ci))\ T1 will consist of a singular point and a closed loop. Figure 9.11(c)

shows the case when Cj of Type IV is connected with a Ck of Type 2. In this case,

Ci\TD
� 6= ; and Ci passes through a vertex of T

D tangentially; thus Bdr([Br(Ci))\
T1 consists of a singular curve with a singular point on it.

When the number of connected components in Ci \ (TD
� [ TD) is two, the types

of Cj which can be included in Ci are Type I, Type II, and Type V (Figure 9.12).

When Cj is of Type III or IV, Cj intersects with T
D at one point of multiplicity

two and one or two points of multiplicity one. There are four intersection points

between a torus and a circle at most; thus if Ci includes one Cj of Type III or IV,

there is only one Cj in Ci.

Two Cjs in Ci can be connected with (i) two Cks of Type 2, or (ii) one Ck of Type

2 and two Cks of Type 1. We consider the case when two Cjs of Type V are included

in Ci. Let's assume that Ck has no tangent intersection with T
I[TO. Figure 9.13(a)

shows two Cjs and corresponding intersections ([Br(Cj))\T1. Each ([Br(Cj))\T1
has two closed loops as a boundary curve. When two Cjs are connected by two Cks

of Type 2, there are three topological types of Bdr([Br(Ci))\T1 (Figures 9.13(b){
(d)). Figure 9.13(e) presents the case of two Cjs connected by two Cks of Type 2

which has a tangent intersection point with T I[TO. Figure 9.13(f) presents the case

of two Cjs connected by two Cks of Type 1 and one Ck of Type 2. The examples

of TTI curves for the case of two Cjs of Type V are included in Ci are given in

152



(a)

(b)

(c)

Figure 9.10: The TTI curves when a Cj of Type I is in Ci.
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(a)

(b)

(c)

Figure 9.11: The TTI curves when a Cj (of Types II, III, or IV) is in Ci.
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Type VType I Type II

Type I Type II Type V

Figure 9.12: Possible pairs of types of ([Br(Cj)) \ T1, where Cj is a connected

component in Ci \ (TD
� [ TD).

Figure 9.14.

Figure 9.15(a) shows two Cjs (Type I and Type V) and corresponding intersec-

tions ([Br(Cj))\ T1. The topological types of Bdr([Br(Ci)) \ T1 when two Cjs of

Type I and Type V are connected by two Cks of Type 2 are given in Figures 9.15(b){

(e). The topological type of Bdr([Br(Ci)) \ T1 when two Cjs of Type I and Type

V are connected by two Cks of Type 1 and a Ck of Type 2 is given in Figure 9.15(f).

Figure 9.16(a) shows two Cjs (Type II and Type V) and corresponding inter-

sections ([Br(Cj)) \ T1. The topological types of Bdr([Br(Ci)) \ T1 when two

Cjs of Type II and Type V are connected by two Cks of Type 2 are given in Fig-

ures 9.16(b){(e). The topological type of Bdr([Br(Ci))\ T1 when two Cjs of Type

II and Type V are connected by two Cks of Type 1 and a Ck of Type 2 is given in

Figures 9.16(f).

Similarly, we can determine the topological types of Bdr([Br(Ci)) \ T1 when

two Cjs of Type I and Type I, or Type I and Type II, or Type II and Type II are

given (Figures 9.17{9.19).

� If Ci = C and Ci is embedded in T
O, T1 \ T2 consists of a singular circle or a

singular curve with one or two singular points on it.
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Figure 9.13: Types of Bdr([Br(Ci)) \ T1 when two Cjs of Type V are connected

by two or three Cks.
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(c)

(d)

Figure 9.14: The TTI curves when two Cjs (of Type V) are in Ci.
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Figure 9.15: Types of Bdr([Br(Ci))\T1, where Ci includes two Cjs (of Type I and

Type V) and two or three Cks.
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Figure 9.16: Types of Bdr([Br(Ci)) \ T1, where Ci includes two Cjs (of Type II

and Type V) and two or three Cks.
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Figure 9.17: Types of Bdr([Br(Ci)) \ T1, where Ci includes two Cjs (of Type I)

and two or three Cks.
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Figure 9.18: Types of Bdr([Br(Ci))\T1, where Ci includes two Cjs (of Type I and

Type II) and two or three Cks.

161



(a)

T
O

T
I

T
D

(b)

(c)

(d)

Cj

Cj

(e)

Cj

Cj

Ck
Ck

Ck
Ck

Cj

Cj

Cj

Cj

Ck

Ck

T1

(f)

Ck
Ck

Cj

Cj

Ck

Cj

Cj

Ck

Ck

T1 T1T1

Figure 9.19: Types of Bdr([Br(Ci)) \ T1, where Ci includes two Cjs (of Type II)

and two or three Cks.
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(a)

(b)

Figure 9.20: The cases when Ci is embedded in T
O.

Let's assume that Ci = C. A circle can be embedded in T
O if and only if

the circle is a pro�le circle, a cross-sectional circle, or an Yvone-Villarceau circle

of TO. We consider the case when Ci \ (TD
� [ T

D) 6= ;; thus, TO cannot have an

Yvone-Villarceau circle and TO cannot embed Ci as a pro�le circle. If Ci is a cross-

sectional circle of TO and T
D is a point, T2 is outside T1, and T2 intersects with T1

tangentially along a cross-sectional circle and a pro�le circle of T1 (Figure 9.20(a)).

If C is a cross-sectional circle of TO and T
D is a volume, T2 intersects with T1 at

a singular curve which consists of a cross-sectional circle of T1 and two loops which

are connected by two singular points from the cross-sectional circle (Figure 9.20(b)).

9.2 Analysis for the Case of 0 < r = �

When the minor radius of the torus T1 and the minor radius of the torus T2 are

same, the inner o�set surface of T1 is a circle: T I = C�(0; e3). Let C denote the

main circle of T2: C = CR(p;N). If there is no intersection point between C and

T
I , we can apply the methods for the case of 0 < r < � to detect the closed loops
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and singular curves in the TTI curve (see Section 9.1). Thus, we consider the only

cases where C intersects with T
I . Since C \ T

I is a circle/circle intersection, C

intersects with T
I at two intersection points at most. When C intersects with T

I

at a point q, the singular points are derived in the TTI curve by intersecting two

cross-sectional circles centered at q on T1 and T2. These cross-sectional circles are

two great circles contained on the same sphere Sr(q). Thus, there are only two

cases: two cross-sectional circles are coincident or they intersect at two points.

Let Ci denote a connected component in C \ (TO
� [ T

O), which intersects with

T
I .

� If Ci intersects with T
I at an intersection point q and the tangent vector of

Ci at q is parallel to the tangent vector of T I at q, the cross-sectional circle

of T2 at q intersects with T1 at a circle, where each point on the circle is a

singular point. Bdr([Br(Ci)) \ T1 consists of a singular circle and a singular

curve which intersect at two singular points: q� r
e3+N
jje3+Njj

, if e3 +N 6= 0, and

q� re3, otherwise (see Figure 3.13(d)).

� Otherwise, if Ci intersects with T
I at one or more intersection points, the

intersection curve consists of a singular curve (see Figure 9.21).

The �gures in the left columns of Figure 9.21 illustrate the relative positions of C in

the C-space of the torus T1; the �gures in the right columns of Figure 9.21 illustrate

the corresponding relative con�gurations of T1 \ T2.
When Ci intersects with T

I at an intersection point q and the tangent vector of

Ci at q is parallel to the tangent vector of T I at q, the cross-sectional circle of T1 at

q and the cross-sectional circle of T2 at q are coincident, and there is no intersection

point between Ci and T
D. If such Ci has k tangent intersection points with T

O nTD,

Bdr([Br(Ci)) \ T1 consists of a singular curve with 2 + k singular points on it.

If Ci intersects with T
I at an intersection point q and the tangent vector of Ci at

q is not parallel to the tangent vector of T I at q, the cross-sectional circle of T1 at q

intersects with T at two singular points. When Ci passes through T
I , regardless of

the intersection points of Ci and T
O, Bdr([Br(Ci))\T1 consists of a singular curve.

We can trace Bdr([Br(Ci)) \ T1 from the singular points on it (see Figure 9.21).
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(a)

(b)

Figure 9.21: The TTI curve for the case when Ci intersects with T
I , where T I =

CR(0; e3).
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(c)

(d)

Figure 9.21: (cont.)
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9.3 Algorithm: Torus Torus Intersection

Algorithm: Torus Torus Intersection of Appendix A.7 summarizes the TTI algo-

rithm based on the above case analyses. In this algorithm, we assume that cubic

curve tracing routines: Trace Singular TTI Curve (T1, T2, DP ) and Trace Regular

TTI Curve (T1, T2, IP ), are available, where T1 and T2 are tori, and IP and DP

are a set of starting points and a set of singular points, respectively. Each singular

intersection curve can be traced starting from its singular point (see also Piegl [21]),

the details of which are given in the routine: Trace Singular TTI Curve. We assume

that when a singular curve is traced, if the singular curve passes through a point in

IP , that point is removed from IP .

In Line (1), we assume that the routine Detect Circles in TTI(T1, T2), which

detects and computes all degenerate circles in the TTI curve is available (see Sec-

tion 3.7). Line (2) computes the starting points for the case where C is included in

T
O
� \ T I

+ \ TD
+ . By intersecting an arbitrary cross-sectional circle of T2 with T1, the

starting points are computed. Lines (3){(5) compute the starting points of closed

loops in the TTI curve. If Ci is a connected component in C \ (TO
� \ T

I
+) and Ci

does not intersect with T
D
� [ T

D, Bdr([Br(Ci)) \ T1 is a closed loop. When q is

an end point of Ci, and qT denotes a point on T1 at which Sr(q) touches T1, let CT

denote the cross-sectional circle of T1 which passes through qT . Line (3) detects the

closest point from qT in the set of points T2 \ CT as a starting point for a closed

loop. Line (4) computes the starting points for the closed loop which corresponds to

Ci which is a connected component in TO
� \T I

+, where Ci\ (TD
� [TD) 6= ;. Line (5)

computes the starting points for the closed loop which corresponds to Ck which is

a connected component in TO
� \ T I

+ \ TD
+ , and both end points of Ck are on T

D. In

Line (6), all singular curves in the TTI curve are traced from DP which is the set

of all singular points in the TTI curve. Line (7) traces all closed loops in the TTI

curve.
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Chapter 10

Conclusion

Given two arbitrary surfaces, the determination of all possible topological types

of surface-surface intersection curve is non-trivial, in general. This is indeed the

case even for intersecting two natural quadrics [18]. However, in the case of the

torus/simple-surface intersection curve computation considered in this thesis, we

demonstrated that the classi�cation can be made considerably easier based on a

C-space transformation.

We demonstrated that all topological/geometric classi�cations (including singu-

lar point and/or degenerate circle detection) can be carried out using vector/distance

computations and curve/surface intersections (see Table 4.1). All required compu-

tations can be implemented e�ciently and robustly using 
oating-point arithmetic.

For TPI, TSI, and TYI curves, we showed that exactly one starting point on each

closed loop can be generated. We also presented methods that detect all closed loops

in TKI and TTI curves, in which given surfaces need be subdivided at most four

times.

Given a torus and a simple surface, to apply an intersection algorithm based on

a C-space approach, we treated one surface as an obstacle and the other surface as

the envelope surface of a moving ball. The problem of intersecting two surfaces was

reduced to that of intersecting a C-space obstacle (of one surface) and a moving

ball's center trajectory (of the other surface). For given two surfaces (whenever one

surface is an envelope surface of a moving ball and the C-space obstacle of the other

surface can be computed), the intersection algorithm based on a C-space approach

can be applied. The problem of intersecting cyclides or canal surfaces based on a
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C-space approach remains as an important problem for further research.
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Appendix A

Torus/Simple-Surface

Intersection Algorithms
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A.1 TPI Algorithm

Algorithm: Torus Plane Intersection

Input: T = Tr;R(0; e3); /� Torus �/
L = L(p;N); /� Plane �/

begin

DP :=f Sr(pi) \L j pi is a tangent intersection point in CR(p;N) \ (LO [LI)g;
if CR(0; e3) � L

O
+ [ LI� then /� There is no intersection �/

Output(;); /� Figure 5.2(a) �/
else if CR(0; e3) � L

O
� \ LI+ then

if e3 �N = 0 then

(1) Compute Pro�le Circles (T , L);

else /� Figure 5.2(b) �/
Trace Regular TPI Curve(T , L, L \ Cr(C(0);NC(0)));

else if jDP j = 1 then /� Figure 5.3 �/
Trace Singular TPI Curve(T , L, DP );

else if jDP j = 2 then /� Figure 5.6 �/
(2) Compute Yvone Villarceau Circles(T , L, DP );

else if CR(0; e3) is embedded in L
I then

Output(CR(q; e3)), where q = 0+ re3;

else if CR(0; e3) is embedded in L
O then

Output(CR(q; e3)), where q = 0� re3;

else begin

if there is only one circular arc C1 in CR(0; e3) \ (LO� \ LI+) then begin

(3) q := the middle point of C1;

pi := a point in L \Cr(q;Nq), where Nq := N� q�p
jjq�pjj ;

Trace Regular TPI Curve(T , L, fpig); /� Figure 5.4 �/
end

else begin

if hp;Ni = 0 and he3;Ni = 0 then

(4) Compute Cross Sectional Circles (T , L);

else /� Figure 5.5 �/
(5) Trace Regular TPI Curve(T ,L,fL \ CR+r(0; e3)g);

end

end

end
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A.2 TSI Algorithm for the Case of 0 < � � r

Algorithm: Torus Sphere Intersection I /� For the case of 0 < � � r �/
Input: T = Tr;R(0;N); /� Torus �/

S = S�(p); /� Sphere �/
begin

if p 2 T
O n TD then begin /� Figure 6.1(a) �/

(1) pT := p+ �

pc � p

jjpc � pjj , where pc is the closest point of CR(0;N) to p;

Output(fpT g);
end

else if p 2 T
D and p is a vertex of TD then /� Figure 6.1(b) �/

Output(C�(q, N)), where � =
�

� + r

R and q =
r

� + r

p;

else if p 2 T
D and p is not a vertex of TD then begin /� Figure 6.1(c) �/

(2) pT := p+ �

pf � p

jjpf � pjj , where pf is the farthest point of CR(0;N) from p;

Trace Singular TSI Curve(T , S, fpT g);
end

else if p 2 T
I then

if 0 < � < r then begin /� Figure 6.1(d) �/
(3) pT := pc + r

p� pc

jjp� pcjj , where pc is the closest point of CR(0;N) to p;

Output(fpT g),
end

else if � = r then /� Figure 6.1(e) �/
Output(Cr(p;Np)), where Np = N� p

jjpjj ;
else if p 2 T

O
+ [ T I

� then /� Figures 6.2(a){(b) �/
Output(;);

else if p 2 T
O
� \ T I

+ \ TD
+ then begin /� Figure 6.2(c) �/

pc := the closest point of CR(0;N) to p;

(4) pSC := one point of S \ Cr(pc;Npc), where Npc = N� pc

jjpcjj ;
Trace Regular TSI Curve(T , S, fpSCg);

end

else if p 2 T
D
� then /� Figure 6.2(d) �/

if p�N = 0 then

(5) Compute Pro�le Circles (T , S);

else

(6) Trace Regular TSI Curve(T ,S,S \ Cr(C(0);NC(0))),

end
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A.3 TSI Algorithm for the Case of 0 < r < �

Algorithm: Torus Sphere Intersection II /� For the case of 0 < r < � �/
Input: T = Tr;R(p;N); /� Torus �/

S = S�(0); /� Sphere �/
begin

DP :=fSr(pi) \ S j pi is a tangent intersection point in CR(p;N) \ (SO [ SI) g;
if CR(p;N) � S

O
+ [ SI� then /� There is no intersection �/

Output(;);
else if CR(p;N) � S

O
� \ SI+ then /� Figure 6.5(a) �/

if p�N = 0 then

(1) Compute Pro�le Circles (T , S);

else

Trace Regular TSI Curve(T , S, S \ Cr(C(0);NC(0)));

else if jDP j = 1 then /� Figures 6.5(b) and 6.5(e) �/
Trace Singular TSI Curve(T , S, DP );

else if jDP j = 2 then /� Figures 6.6(a){(b) �/
(2) Compute Yvone Villarceau Circles(T , S, DP );

else if CR(p;N) is embedded in S
I then /� Figure 6.6(c) �/

Output(C�(q;N)), where � =
�

� � r

R and q =
�

� � r

p;

else if CR(p;N) is embedded in S
O then /� Figure 6.6(d) �/

Output(C�(q;N)), where � =
�

� + r

R and q =
�

� + r

p;

else begin

if there is only one circular arc C1 in CR(p;N) \ (SO� \ SI+) then begin

(3) q := the middle point of C1; /� Figure 6.5(c) �/
pi := a point in S \Cr(q;Nq), where Nq := N� q�p

jjq�pjj ;

Trace Regular TSI Curve(T , S, fpig);
end

else begin /� Figure 6.5(d) �/
if hp;Ni = 0 and jjpjj2 = R

2 + �
2 � r

2 then

(4) Compute Cross Sectional Circles (T , S)

else

(5) Trace Regular TSI Curve(T ,S,fS \ CR+r(p;N)g);
end

end

end
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A.4 TYI Algorithm for the Case of 0 < r � �

Algorithm: Torus Cylinder Intersection I /� For the case of 0 < r � � �/
Input: T = Tr;R(0; e3); /� Torus �/

Y = Y�(p;N); /� Cylinder �/
begin

if CR(0; e3) � Y
O
+ [ Y I

� then /� there is no intersection �/
Output(;);

else if p� e3 = 0 and e3 �N = 0 and R� r � � � R+ r then

Compute Pro�le Circles(T , Y ); /� see Figure 3.5 �/
else if � = r and hp; e3i = 0 and he3;Ni = 0

and jjpjj2 = R
2 + hp;Ni2 then begin

Compute Cross Sectional Circles(T , Y ); /� see Figure 3.8 �/
Trace Singular TYI Curve(T , Y , f q�re3 g), where q = p+h0� p;NiN;

end

else if � = R and he3;Ni2 = cos2(arcsin(r=R)) and jjp�Njj2 = r
2 then begin

Compute Yvone Villarceau Circles(T , Y ); /� see Figure 3.11 �/
Trace Singular TYI Curve(T , Y , f q�R

q

jjqjj g), where q = p+ h�p;NiN;

end

else if CR(0; e3) � Y
O
� \ Y I

+ then /� Figure 7.6 �/
(1) Trace Regular TYI Curve(T , Y , Y \ Cr(C(0);NC(0)));

else begin

for each circular arc Ci in CR(0; e3) \ ((Y O
� \ Y I

+) [ Y I [ Y O) do begin

(2) DP := f Cr(pi;Npi
)\Y j pi is a tangent intersection in Ci\ (Y I [Y O)g

[ f Cr(pi;Npi
) \ Y j pi 2 Ci \ Y I if Y I = l(p;N) g;

if jDP j � 1 then /� Figures 7.2(c), 7.5, 7.7 �/
(3) Trace Singular TYI Curve(T , Y , DP );

else begin /� Figures 7.2(a){(b) �/
(4) q := an end point of Ci;

(5) pY := Y \Br(q);

(6) l := a pro�le line of Y that passes through pY ;

(7) pTC := the closest point to pY among those in T \ l;
(8) Trace Regular TYI Curve(T , Y , f pTC g);

end

end

end

end
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A.5 TYI Algorithm for the Case of 0 < � < r

Algorithm: Torus Cylinder Intersection II /� For the case of 0 < � < r �/
Input: T = Tr;R(0; e3); /� Torus �/

Y = Y�(p;N); /� Cylinder �/
begin

if p� e3 = 0 and e3 �N = 0 and R� r � � � R+ r then

Compute Pro�le Circles(T , Y ); /� see Figure 3.5 �/
else begin

(1) DP := f C�(q;N)\T j q is a tangent intersection in l(p;N)\ (T I [TO[TD)

or q is an intersection point of l(p;N) and the vertices of TDg;
if jDP j � 1 then

(2) Trace Singular TYI Curve(T , Y , DP );

for each connected line segment li � l(p;N) \ ((T I
+ \ TO

� ) [ T I [ TO)

which does not intersect with T
I [ TO tangentially, and li \ TD = ;

do begin

(3) q := an end point of li;

(4) pT := T \B�(q);

(5) C := a cross-sectional circle of T which passes through pT ;

(6) pTC := the closest point to pT among those in Y \ C;
(7) Trace Regular TYI Curve(T , Y , f pTC g);

end

if l(p;N) \ TD
� 6= ; then begin

if jDP j = 0 then begin

(8) q := an end point of l(p;N) \ TD
� ;

(9) pT := the tangent intersection point between B�(q) and T ;

(10) C := the cross-sectional circle of T which passes through pT ;

(11) IP := f two points in Y \C which are minimum and maximum distance

(12) from pT in polar coordinate g;
end

else if (jDP j = 2 and the z-values of two points in DP have same signs)

or jDP j = 1 then

(13) IP := f the closest regular point from 0 in C \ l(p;N) g,
where C is a cross-sectional circle of T which passes through

one of the points in DP ;

Trace Regular TYI Curve(T , Y , IP );

end

end

end
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A.6 TKI Algorithm

Algorithm: Torus Cone Intersection

Input: T = Tr;R(0; e3); /� Torus �/
K = K�(p;N); /� Cone �/

begin

(1) Detect Circles in TKI (T , K); /� see Figures 3.6, 3.9, and 3.12 �/
DP := f Cr(pi;Npi

) \K j pi is a tangent intersection point

in C \ (KI [KO [KD [KB), or the vertex of KD in C \KD,

and Npi
=

e3�(pi�0)
jje3�(pi�0)jj

g;

if C \ (KO
� \KI

+ \KD
+ ) = C and jDP j = 0 then

(2) IP := IP [ (Cr(C(0); NC(0)) \K); /� see Figure 8.6 �/
else begin

for each connected component Ci � K
O
� \KI

+ do begin

if Ci \ (KD [KD
� ) = ; then begin

q := an end point of Ci;

pK := the tangent intersection point between Br(q) and K;

l := a pro�le line of K which passes through pK ;

(3) IP := IP [ f the closest point from pK in l \ T g;
end

else begin

l := an arbitrary pro�le line of K;

(4) IP := IP [ f q j q 2 l \ T g;
for each connected component Ck � Ci n (KD

� [KD) do

if both end points of Ck are on K
D then

(5) IP := IP [ f q j q 2 Cr(pm;Npm) \K, pm is the middle point

of Ck and Cr(pm;Npm) is a cross-section circle of T at pm g;
end

end

end

if jDP j � 1 then

(6) Trace Singular TKI Curve(T , K, DP );

if jIP j � 1 then

(7) Trace Regular TKI Curve(T , K, IP );

end
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A.7 TTI Algorithm

Algorithm: Torus Torus Intersection

Input: T1 = T�;�(0; e3); /� Torus �/
T2 = Tr;R(p;N); /� Torus �/

begin

(1) Detect Circles in TTI (T1, T2);

DP := f Cr(pi;Npi
)\T1 j pi is a tangent intersection point in C\(T I[TO[TD),

or a vertex of TD in C \ TD, and Npi
=

N�(pi�p2)
jjN�(pi�p2)jj

g;
if r = � then

DP := DP [ f Cr(pi;Npi
) \ T1 j pi 2 T

I \ C and Npi
=

N�(pi�p2)
jjN�(pi�p2)jj

g;

if C \ (TO
� \ T I

+ \ TD
+ ) = C and jDP j = 0 then

(2) IP := IP [ (Cr(C(0);NC(0)) \ T1);
else

for each connected component Ci � T
O
� \ T I

+ do begin

if Ci \ (TD [ TD
� ) = ; and Ci 6= C then begin

q := an end point of Ci;

pT := the tangent intersection point between Br(q) and T1;

CT := the cross-sectional circle of T1 which passes through pT ;

(3) IP := IP [ f the closest point from pT in CT \ T2 g;
end

else begin

C1 := an arbitrary cross-sectional circle of T1;

(4) IP := IP [ f q j q 2 T2 \ C1 g;
for each connected component Ck � Ci \ (TO

� \ T I
+ \ TD

+ )) do

if two end points of Ck are on T
D then

(5) IP := IP [ f q j q 2 Cr(pm;Npm) \ T1, pm is the middle point

of Ck and Cr(pm;Npm) is a cross-section circle of T2 at pm g;
end

end

if jDP j � 1 then

(6) Trace Singular TTI Curve(T1, T2, DP );

if jIP j � 1 then

(7) Trace Regular TTI Curve(T1, T2, IP );

end
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Appendix B

Torus/Circle Intersection

We introduce a method to compute the intersection between a torus T and a circle

C: T = Tr;R(0; e3), where 0 = (0; 0; 0) and e3 = (0; 0; 1), and C = C�(p;N), where

p = (px; py; pz). Firstly, we compute the intersection T \L, where L is a main plane

of C: L = L(p;N). By computing the intersection of T \L and C, we can compute

the intersection points between T and C.

We denote the main plane of C as L whose basis vectors are v1 and v2, where

v1 = (v1x; v1y; v1z), v2 = (v2x; v2y; v2z). There are relations between v1, v2, and N

as follows: hv1;v2i = hv1;Ni = hv2;Ni = 0, and hv1;v1i = hv2;v2i = 1.

T is in a standard position, thus we may represent T in the implicit equation:

T (x; y; z) = (x2 + y
2 + z

2 +R
2 � r

2)2 � 4R2(x2 + y
2) = 0; (B.1)

and we formulate L and C as follows:

L(s; t) = p+ sv1 + tv2; (B.2)

C(s; t) = s
2 + t

2 ��2 = 0: (B.3)

To compute T\L, we need to solve the system of Equation (B.1) and Equation (B.2).

We can derive the parametric formula of the intersection curve between T and L

by substituting the parameters x, y, z of T with the parameters s, t of L as follows:

x = px + sv1x + tv2x;

y = py + sv1y + tv2y;

z = pz + sv1z + tv2z:
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The terms x2 + y
2 + z

2 and x
2 + y

2 are represented by the parameters s and t as

follows:

x
2 + y

2 + z
2 = jj(x; y; z)jj2

= jjp+ sv1 + tv2jj2

= s
2 + t

2 + 2shp; v1i+ 2thp;v2i+ jjpjj2;
x
2 + y

2 = (px + sv1x + tv2x)
2 + (py + sv1y + tv2y)

2
:

The equation of T \ L is represented as follows:

(T \ L)(s; t) = (s2 + t
2 + 2shp;v1i+ 2thp;v2i+ jjpjj2 +R

2 � r
2)2

�4R2((px + sv1x + tv2x)
2 + (py + sv1y + tv2y)

2)

= 0:

(B.4)

The intersection points between C and T \ L are a solution of Equation (B.3) and

Equation (B.4). From Equation (B.3), we derive the equation s2+ t
2 = �2. We can

replace the term s
2+ t

2 in Equation (B.4) by �2, and the term t
2 by �2� s

2, thus,

C \ (T \ L) is a solution for the following two equations:

s
2 + t

2 ��2 = 0;

c4s
2 + c3st+ c2s+ c1t+ c0 = 0;

where ci (0 � i � 4) is a constant value. This system is reduced as follows:

(c23 + c
2
4)s

4 + 2(c4c2 + c3c1)s
3 + (2c0c4 � c

2
3�

2 + c
2
1 + c

2
2)s

2

+2(��2
c3c1 + c0c2)s+ c

2
0 ��2

c
2
1 = 0

t = �c4s
2 + c2s+ c0

c3s+ c1

The quartic polynomial equation is solved in closed form; thus, we can compute the

intersection points of T \ C e�ciently and robustly.
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