
Shrinking: Another Method for Surface Reconstruction

In-Kwon Lee
(corresponding author)

Dept. of Computer Science
Yonsei University

Seoul 120-749, South Korea
iklee@yonsei.ac.kr

Ku-Jin Kim
The Graduate School of

Information and Communication
Ajou University

Suwon 442-749, South Korea
kujinkim@ajou.ac.kr

Abstract

We present a method to reconstruct a pipe or a canal sur-
face from a point cloud (a set of unorganized points). A pipe
surface is defined by a spine curve and a constant radius of
a swept sphere, while a variable radius may be used to de-
fine a canal surface. In this paper, by using the shrinking
and moving least-squares methods, we reduce a point cloud
to a thin curve-like point set which will be approximated to
the spine curve of a pipe or canal surface. The distance be-
tween a point in the thin point cloud and a corresponding
point in the original point set represents the radius of the
pipe or canal surface.

1. Introduction

A pipe surface is defined as the envelope of a sphere with
a constant radius � moving through a spine curve C���. A
canal surface is a generalization of a pipe surface, where a
variable radius function ���� is used instead of �. Pipe and
canal surfaces are used in many practical applications such
as surface blending and transition surfaces between pipes
[1, 2]. Furthermore, there are many real or synthetic objects
which can be represented by only pipe or canal surfaces
(see Figure 1). In this paper, we consider the problem of
reconstructing a pipe or canal surface from an unorganized
point cloud having no ordering or structure of the point ele-
ments. The input point cloud is usually scanned from a real
pipe/canal surface by a 3D scanner.

The motivation of this work comes from recent research
in reverse engineering area, attempting to reconstruct sur-
faces such as helical surfaces and surfaces of revolution
[3], profile surfaces [4], developable surfaces [5], and pla-
nar faces [6]. The details about these series of works can
be found in [7] and [8]. The reconstruction of the sweep
surfaces generated by translational sweeping [9] is also
discussed by other researchers. Instead of reconstructing

Figure 1. Some objects created using only
canal surfaces

spline surfaces or polygonal meshes, this research concen-
trates on reconstructing a profile (cross-section) curve and
a kinematic motion that defines a trajectory of the moving
profile curve. This procedural description of a geometric
model reduces the size of the object database and makes
design/manipulation processes efficient and easy.

Ramamoorthi and Arvo [10] suggested a system to re-
construct various kinds of generative models, including pipe
and canal surfaces, from point clouds with the aid of a pre-
defined user-specified hierarchy of the various generative
models. Unlike their work, we suggest an algorithm which
avoids serious user interaction by narrowing down our inter-
est to reconstruct pipe or canal surfaces only. Our solution
uses only local linear optimization procedures that are much
more efficient and robust than complex nonlinear optimiza-
tion methods.

In our previous papers [11, 12], we have roughly
sketched out the idea behind reconstructing pipe surfaces
(see Figure 2). First, an appropriate subregion � of a given
point cloud is taken (Figure 2(a)). Then, a torus is fitted to
�. Note that the local shape of a pipe surface fits a torus.
The torus implies the radius of a swept sphere of the pipe
surface. Each data point is translated by the radius towards
a (target) spine curve along an estimated normal vector of
the point (Figure 2(b)). After the translation, the point set

(a) (b)

(c) (d)

R

Figure 2. Pipe surface reconstruction using
torus fit: (a) input points and estimated nor-
mal vectors – � represents a selected region
where a torus is fitted, (b) translating each
point by the radius of torus, (c) spine curve
approximated from thin point cloud in (b), and
(d) reconstructed pipe surface from the spine
curve and the radius of the swept sphere.

has a very thin curve-like shape. This thin point cloud is
approximated to a smooth spine curve (Figure 2(c)). In this
method, automatic computation of a local region � does
not work well in many cases; thus, in many cases, we need
some sort of user interaction to specify an appropriate lo-
cal region. Furthermore, this torus fitting technique is not
appropriate to generalize for canal surface reconstruction.

In this paper, we introduce a shrinking method to find
a spine curve and the (variable) radius of a swept sphere
from a given point cloud. Let � denote a set of input points.
Using the shrinking method, � is reduced to a point cloud ��
whose shape represents the spine curve of the pipe or canal
surface. Then, the point cloud �� is processed by a method
called moving least-squares, which transforms a point cloud
into a very thin curve-like shape. The output of the moving
least-squares method, ��, is approximated to a spine curve
. The distance between two points of each corresponding
point pair in � and �� represents the approximated radius of
a pipe/canal surface.

We summarize the contributions of this paper as follows:

� Using the shrinking method, our algorithm eliminates
the difficulty of selecting an appropriate local region
for torus fitting.

� Almost the same algorithms can be applied to recon-
struct a pipe and a canal surface.

� Our method uses only local linear optimization pro-
cedures that are much more efficient and robust than
complex nonlinear optimization methods.

This paper is organized as follows. In the next two sec-
tions, we describe an algorithm to reconstruct a pipe surface
and a canal surface from a given point cloud, respectively.
In the fourth section, we show experimental results of the
pipe/canal surface reconstruction. Finally, in the last sec-
tion, we conclude this work and suggest future research di-
rections.

2. Pipe Surface Reconstruction

A pipe surface B��� �� with a spine curve C���, � � ��,
and a radius � is defined by

B��� �� � C��� � �N��� ��� � � ��� � � ���

where for a fixed �� � ��, N��� ��� represents the unit cir-
cle on the normal plane of the spine curve. The center of
N��� ��� is C����. Thus, a pipe surface is uniquely defined
by a spine curve C��� and a radius �.

Let � � �P� � � � �� ���� 	� denote a given set of points
that is likely to be on a pipe surface. We assume that the unit
normal vectors,
 � �N� � � � �� ���� 	�, for the points of
� were already estimated. The estimation of point normals
is a common subject in many reverse engineering problems;
thus, various methods are already known [13, 14]. We have
used a method to estimate N� of P�: i) collecting a set �� of
the neighboring points of P�, ii) computing the regression
plane of �� by the least-squares method, and iii) taking the
normal of the plane as N�. Without loss of generality, we
assume that the normal vectors point to the outward direc-
tion of a pipe surface. It is also assumed that � represents a
regular pipe surface without any self intersection [1]. This
assumption is feasible because we only consider the case
where an input point set is scanned from a real-world pipe
object.

Our algorithm is sketched in Figure 3. The algorithm
consists of three phases: shrinking, moving least-squares,
and spine curve approximation. We describe the details of
each stage in the rest of this section.

2.1. Shrinking

Basic Algorithm

The basic idea of this algorithm is that for a point P � there
exist neighboring points having almost equal normal direc-
tions to the normal direction N� of P�. Let �� be a set of

2

S

Ŝ

S̃

Spine curve

Pipe surface

Radius

Shrinking

Moving least-squares

Spine curve approximation

Figure 3. Pipe surface reconstruction algo-
rithm.

neighboring points of P� defined by

�� � �P� � �P� � P�� � �� P� � ���

where� is a prescribed small constant. With an appropriate
small �, a point P� in � probably has a neighboring point
set �� such that

�N� �N�� �� for all P� � ��� (1)

where ��� �� denotes the scalar product of two vectors.
Consider a situation where � shrinks to a spine curve

gradually by translating each point P� of � along the N�

direction. � is fixed and the neighboring set � � of P� is
recomputed at each stage of the shrinking.

Then, more and more��s including the points of (almost)
the opposite normal directions, that break the condition in
Equation (1) will appear by stages.

Pi

Ti

Figure 4. The basic idea of the shrinking
method.

The shrinking stops when a large enough portion of the
point set breaks the condition in Equation (1). Figure 4
shows the basic idea of shrinking: as the point set shrinks,

(a) (b) (c)

(d) (e)

Figure 5. Shrinking � of 2000 points: (a) 0,
(b) 0, (c) 63, (d) 672, and (e) 1631 �� break the
condition of Equation (1).

Algorithm 1: Shrinking for pipe surface

1) for � � � to � do �P� � P�;
2) BreakCount � 0;
3) for � � � to � do

for � � � to � do
if ��P� � �P�� � � and �N� �N�� � � then

BreakCount � BreakCount + 1;
4) if BreakCount � � � � then

stop and return �� � ��P� � � � �� ���� �	;
5) for � � � to � do �P� � �P� � Æ � N�;
6) Goto step 3);

Figure 6. Shrinking algorithm for pipe surface
(Algorithm 1)

each �� may include the points having opposite normal di-
rections. In Figure 5(a) we have 2000 input points and es-
timated normals. The number of ��s that include the points
having an opposite normal direction is increasing gradually
from 0 to 1631 as the input point set shrinks.

The shrinking algorithm is summarized in Algorithm 1
(see Figure 6). � shrinks to a point set

�� � ��P� � � � �� ���� 	��

whose shape represents a spine curve of a pipe surface. In
Algorithm 1, Æ denotes a prescribed shrinking step that can
be set as a small constant. � is a real constant between 0
to 1 denoting a tolerance of the portion of the point set that
breaks the condition in Equation (1). We used � 	 ���
for most of examples shown in this paper. Thus, � is the
only sensitive parameter that must be given by users inter-
actively.

3

Grouping

In Algorithm 1, for a point �P�, we checked all points �P� in
� to see if �P� satisfies with the condition:

��P� � �P�� � � and �N� �N�� � ��

For the point �P�, if we know which points in � have opposite
normal directions to N� in advance, we may improve the
time efficiency of shrinking algorithm.

We subdivide the given point set � into subsets ����,
(��
 � � � and ��
 � � �), to group the points with
neighboring normal vectors. Subdivision procedure uses
Gauss map, where Gauss map is a mapping of unit normal
vectors onto a unit sphere. The unit sphere is subdivided
into a set of subregions ���� (��
 � � � and ��
 � � �)
along its latitude and longitude. Then, we may hash each
point in � according to the affiliation of its normal vector
in the subregion of unit sphere; i.e., if a normal vector N � is
mapped onto the unit sphere subregion ����, we add point
�P� to the group ����.

Now, for a point �P�, we do not have to check all other
points in the set � to find one with opposite normal direction
to �P�. When �P� is in the group����, we only check the points
in the group ������.

2.2. Moving least-squares

��, the output of the shrinking algorithm, is now pro-
cessed by a method called moving least-squares. The mov-
ing least-squares method was developed by McLain [16, 17]
and used to transform a point cloud into a very thin curve-
like shape [11, 15]. In this subsection, we briefly introduce
the moving least-squares method described in [11].

For each data point, a simple curve or surface that fits
some neighborhood of the data point is computed using a
weighted regression scheme. Then, the data point is moved
to a new position on this approximated curve or surface.
The moving least-squares method is near-best in the sense
that the local error is bounded with the error of a local best
polynomial approximation. Once a point set is reduced to a
very thin curve-like shape, ordering the point set and com-
puting a smooth approximation curve that fits the point set
are not difficult.

Let � � �P� � ���� ��� � � � �� ���� 	� be a point set
in 2D. For a point P� � �, a local regression line, L� 	
� � �� � �, can be computed by minimizing a quadratic
function:

�� �
��

���

���� � �� ���
���� (2)

where �� is a nonnegative weight for each point P � com-
puted by an appropriate weighting function. We can choose

Figure 7. Thining a 2D point set using the
moving least-squares method: original point
set (left), and thin point set after the moving
least-squares method (right).

any weighting function which generates larger penalties for
the points far from P�. One of our choices is

�� �

��
�

��

��
� �

��

��
� � if � � �

� if � 	 ��
(3)

where � � �P� � P�� and � denotes a prescribed weight-
ing radius [18]. The weighting function in Equation (3)
forces the weights of the points that are outside of the open
circle of radius � with the center P� to vanish. Thus, we
can compute a regression line or quadratic curve using only
the set of points whose distances from P� are less than � .

From this weighted regression, we can compute the local
best regression line L� for P�. Consider a transformation
� that transforms a whole point set into a new coordinate
system, where the � axis is parallel to line L�, and P� is a
new origin. Let �� � ��P� � ����� ���� � � � �� ���� 	� be the
transformed point set. The local quadratic regression curve

Q� 	 �� � ���� � ���� � (4)

for �P� can be computed by minimizing

�� �

��
���

������ � ���� � �� ����
���� (5)

Note that the projection of �P� onto Q� is ��� ��. Finally,
P� is moved to a new position computed by the inverse-
transformation, ���, of ��� ��. Figure 7 shows an example
of thining a 2D point set.

The moving least-squares technique cannot be directly
extended into 3D. Although we can easily compute a 3D re-
gression line, computing the 3D quadratic regression curve
is difficult. We suggest a local regression algorithm for each
point P� in 3D as follows:

1. Let � be a set of neighboring points of P�, i.e., � �
�P� � �P� � P�� � ��.

4

2. Compute a regression plane K: � � �� ��� � � by
minimizing the quadratic function

�� �
�

P���

���� ���� � � � ���
��� �

3. Project the points in � onto K.

4. Solve the 2D moving least-squares problem on K.

The above algorithm is based on the fact that a point on a
regular space curve locally has an osculating plane. Basi-
cally, the above algorithm can be extended to any higher
dimension by the projection of the data points in � dimen-
sional space onto a ��� dimensional hyperplane repeatedly
until the problem is reduced to a 2D problem.

Lee [11] suggested some other techniques such as using
EMST (Euclidean minimum spanning tree) for robust local
regression and using correlation to estimate an appropriate
� value for each data point. See [11] for more details.

By using the moving least-squares technique, we can
make a very thin point cloud �� from �� – the output of
shrinking algorithm. Now, we have to order the points in
the very thin point cloud ��. The simplest ordering method
is to connect two closest points each other recursively. After
ordering the points, we approximate �� with a smooth spine
curve using conventional curve approximation/interpolation
techniques [13]. Figure 8 shows an example of ��, �� and an
approximated spine curve.

2.3. Radius of a swept sphere

Let �P� and P� be points in �� and �, respectively, with the
same index �. �� is a discrete version of a spine curve; thus,
we can compute the radius � of the swept sphere of a pipe
surface by averaging the distance between �P� and P�:

� �

��
���

���P� � P�

��
	

� (6)

2.4. Example

Figure 9 shows an example of pipe surface reconstruc-
tion. 2000 points are sampled from an original pipe surface
with some perturbation. The intermediate result �� and �� of
this example have already been shown in Figures 5 and 8.

3. Canal Surface Reconstruction

Canal surface is a generalization of a pipe surface. While
a pipe surface has a constant radius �, a variable radius
function ���� can be used for a canal surface. One of the
parametrizations of a canal surface A��� �� is given by

A��� �� � C��� � ����N���� ��� � � ��� � � ���

Figure 8. �� (left), �� (middle) and an approxi-
mated spine curve (right).

Figure 9. Example of pipe surface reconstruc-
tion: an original pipe surface (left), 2000 sam-
ple points (middle), and a reconstructed pipe
surface (right).

where C���, ����, and N���� �� are a spine curve, a radius
function, and a unit normal vector of the canal surface, re-
spectively. Peternell and Pottmann [2] showed that the canal
surface has a rational parametrization when both C��� and
���� are rational. Figure 10 shows that a canal surface is an
envelope of spheres of variable radii moving along a spine
curve.

A(s, t)

C(t)

NA(s, t)

A(s, t)

Figure 10. Symmetric normal vectors of a
canal surface

Like the pipe surface case, we assume that an input point
set represents a real and regular canal surface [2] without
any self intersection. For a canal surface, we must consider
the following two facts in the shrinking algorithm.

� Due to the variable radius, two symmetric normal vec-
tors of a canal surface may not have exact opposite
directions (see Figure 10). We must define a more
strict condition than Equation (1) suggested for pipe
surfaces. In general, the angle between two symmetric
normal vectors can be in the interval �� 	 . However,
we assume that for a real object, the rate of the change

5

of radius ����� is not too large.

� Unlike the pipe surface case, each data point must
shrink according to a different radius from the others.
Some points stop shrinking in the middle of the algo-
rithm execution, while others continue to shrink until
the points are satisfied with the stopping condition.

In Algorithm 2 (see Figure 11), we add an additional pa-
rameter ! to control the tolerance of direction deviation be-
tween two symmetric normal vectors. If ! � � the condi-
tion is the same as that for the pipe surface case. We used
! � ������ ������Æ� for the examples in this paper as-
suming that ����� is not too large. Furthermore, a tag, stop�,
for each P� is used to record the information of whether P �

has stopped shrinking or not. Only non-stopped points con-
tinue to shrink towards a spine curve. Figure 12 shows an
example of shrinking in canal surface reconstruction.

Algorithm 2: Shrinking for canal surface

1) for � � � to � do
�P� � P�;
stop� � false;

2) BreakCount � 0;
3) for � � � to � do

for � � � to � do
if stop� = false and ��P� � �P�� � �

and �N� �N�� � 	 then
BreakCount � BreakCount + 1;
stop� � true;

4) if BreakCount � � � � then
stop and return �� � ��P� � � � �� ���� �	;

5) for � � � to � do
if stop� = false

�P� � �P� � Æ � N�;
6) Goto step 3);

Figure 11. Shrinking algorithm for canal sur-
face (Algorithm 2)

For a canal surface, we also apply the moving least-
squares technique to �� to generate a very thin point set ��
like the pipe surface reconstruction. Figure 13 shows ��, ��
and a spine curve approximated from ��.

The radius function ���� of a canal surface can be ap-
proximated from the discrete radii

�� �
���P� � P�

��
using a conventional curve approximation technique that is
also used in spine curve approximation. Figure 14 shows
an example of a reconstructed canal surface. 2000 input
points are sampled from an exact canal surface with some
perturbation. The shrinking and moving least-squares steps

Figure 12. Shrinking 2000 data points for re-
construction of a canal surface: 0, 0, 8, 998,
and 1609 points have stopped by stages (from
left to right).

of this example have already been shown in Figures 12 and
13.

Figure 13. �� (left), �� (middle), and an approx-
imated spine curve (right).

Figure 14. Example of canal surface recon-
struction: an original canal surface (left),
2000 sample points (middle), and a recon-
structed canal surface (right).

4. Experimental Results

The original pipe surface B��� �� of the example shown
in Figure 9 is generated with a radius of 1, and a cubic B-
spline spine curve with a knot vector (0, 0, 0, 0, 1, 2, 3, 3, 3,
3) and the six control points shown in Table 1. We take 2000
random sample points from B��� �� � "��� ��, where "��� ��
is a perturbation surface that has any random value between
���� and ��� for each sample point. For the shrinking al-
gorithm, we used Æ � ��
, � � ���, and � � ��
 (see
Algorithm 1). As shown in Figure 5, it took five iteration
steps to generate ��, where 1631 points break the condition
in Equation (1). The radius computed by Equation (6) is
0.984172. The maximal and average distance between the
original spine curve C��� and the approximated spine curve

6

C���� are 1.94653324 and 1.0200849, respectively, where
distance is defined by �C���� C�����.

� � �

������ ����� �����

������ ����� ������

����� ����� ������

������ ���	�� ������

����� ������ ������

����� ������ �����

Table 1. Control points of the spine curve
of the original pipe surface in the example
shown in Figure 9.

� � �

����� ����� �����

����� ������ ����	

���	� ����� ������

����� ��	�� ������

��	�	 ����� �����

����� ����	 ����	�

�����	 ��	�	 �����

����� ����� ����	

������ ��	�� ��	��

����� ����� �����

Table 2. Control points of the spine curve
of the original pipe surface in the example
shown in Figure 15.

� � �

������ ����� �����

������ ����� �����

����� ����� �����

����� ������ �����

������ ������ �����

������ ������ �����

Table 3. Control points of the spine curve
of the original canal surface in the example
shown in Figure 16.

Figure 15 illustrates another example of pipe surface re-
construction. The original pipe surface B��� �� has a radius
of 3, and a cubic B-spline spine curve with a knot vector (0,
0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7) and the 10 control points
shown in Table 2. 2000 random sample points are taken
from B��� �� � "��� �� such that �����
 "��� ��
 ����.
For the shrinking algorithm, we used Æ � ����, � � ����,
and � � ���. It took six iteration steps to generate ��,
where 1934 points break the condition in Equation (1).
The radius computed by Equation (6) is 0.298778. The
maximal and average distance between the original spine

curve and the approximated spine curve are 1.60093152 and
0.814391259, respectively.

Figure 15. Another example of pipe surface
reconstruction: original surface, � (2000
sample points), ��, ��, approximated spine
curve, and reconstructed pipe surface (from
top–left to bottom-right).

The original canal surface A��� �� for the example in
Figure 14 has the same spine curve described in Table 1.
The radius function ���� is a one-dimensional quadratic B-
spline curve with a knot vector (0, 0, 0, 1, 2, 3, 4, 4, 4)
and six control points (2, 1.5, 1, 1.5, 2.5, 2). 2000 sample
points are taken from A��� �� � "��� �� such that �����

"��� ��
 ����. The parameters of the shrinking algorithm
are Æ � ���, � � ���, � � ���, and ! � ������Æ�. �� is
computed after 20 iteration steps of shrinking, where 1609
points finally stopped shrinking. The maximal and average
distance between the original spine curve and the approx-
imated spine curve are 1.772888 and 1.0936823, respec-
tively. The maximal and average distance between the orig-
inal and the approximated radius functions are 0.14423506
and 0.07538086, respectively.

Figure 16 illustrates another example of canal surface re-
construction. The original canal surface A��� �� has a cu-
bic B-spline spine curve with a knot vector (0, 0, 0, 0,
1, 2, 3, 3, 3, 3) and the six control points shown in Ta-
ble 3. The radius function is a one-dimensional cubic B-
spline curve with a knot vector (0, 0, 0, 0, 1, 2, 3, 3,
3, 3) and six control points, (1.9999, 1.6666, 1.103463,
1.037336, 1.833333, 2.5). 2000 sample points are taken
from A��� ���"��� �� such that�����
 "��� ��
 ����. The
parameters of the shrinking algorithm are Æ � ���, � � ���,
� � ���, and ! � ������Æ�. �� is computed after 26 itera-

7

Figure 16. Another example of canal sur-
face reconstruction: original surface, � (2000
sample points), ��, ��, approximated spine
curve, and reconstructed canal surface (from
top-left to bottom-right).

tion steps of shrinking, at which 1995 points have stopped
shrinking. The maximal and average distance between the
original spine curve and the approximated spine curve are
1.4648859 and 1.023708, respectively. The maximal and
average distance between the original and the approximated
radius functions are 0.5901724 and 0.2694635, respectively.

5. Conclusion

In this paper, we have suggested methods to reconstruct a
pipe and a canal surface from an unorganized point set. The
shrinking method and moving least-squares methods were
used effectively to extract a spine curve and a constant ra-
dius (or a radius function) from a given point set. We expect
that this approach can be extended to more complex prob-
lems. Currently, the sweep surface reconstruction problem
is under investigation.

References

[1] T. Maekawa, N. M. Patrikalakis, T. Sakkalis, and
G. Yu. Analysis and applications of pipe surfaces.
Computer Aided Geometric Design, 15(5):437–458,
1998.

[2] M. Peternell and H. Pottmann. Computing rational
parametrizations of canal surfaces. Journal of Sym-
bolic Computation, 23:255–266, 1997.

[3] H. Pottmann and T. Randrup. Rotational and helical
surface approximation for reverse engineering. Com-
puting, 60:307–322, 1998.

[4] H. Pottmann, H.-Y. Chen, and I.-K. Lee. Approx-
imation by profile surfaces. in A. Ball et al. Eds.,

The Mathematics of Surfaces VIII, Information Ge-
ometers, pages 17–36, 1998.

[5] H.-Y. Chen, I.-K. Lee, S. Leopoldseder, H. Pottmann,
T. Randrup, and J. Wallner. On surface approxima-
tion using developable surfaces. Graphical Models
and Image Processing, 61:110–124, 1999.

[6] M. Peternell and H. Pottmann. Approximation in
the space of planes: applications to geometric mod-
eling and reverse engineering. Rev.R.Acad.Cien.Serie
A.Mat, 96(2):243–256, 2002.

[7] H. Pottmann and J. Wallner. Computational line ge-
ometry. Springer-Verlag, 2001.

[8] H. Pottmann, S. Leopoldseder, J. Wallner, and M. Pe-
ternell. Recognition and reconstruction of special sur-
faces from point clouds. Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sci-
ences, Vol. XXXIV, Part 3A, Commisiion III, pp. 271-
276, 2002.

[9] W.-D. Ueng, J.-Y. Lai, and J.-L. Doong. Sweep-
surface reconstruction from three-dimensional mea-
sured data. Computer-Aided Design, 30(10):791–805,
1998.

[10] R. Ramamoorthi and J. Arvo. Creating generative
models from range images. SIGGRAPH ’99 proceed-
ings, 1999.

[11] I.-K. Lee. Curve reconstruction from unorga-
nized points. Computer Aided Geometric Design,
17(2):161–177, 2000.

[12] I.-K. Lee, J. Wallner, and H. Pottmann. Scattered data
approximation with kinematic surfaces. Proceedings
of SAMPTA’99, Loen, Norway, pp. 72–77, 1999.

[13] J. Hoschek and D. Lasser. Fundamentals of Computer
Aided Geometric Design, A. K. Peters, 1993.

[14] P. Krsek, G. Lukás, and R. R. Martin. Algorithms for
computing curvatures from range data. in A. Ball et
al. Eds., The Mathematics of Surfaces VIII, Informa-
tion Geometers, pages 1–16, 1998.

[15] D. Levin, Mesh-independent surface interpolation,
private communication.

[16] D. McLain, Drawing contours from arbitrary data
points, The Computer Journal, 17:318–324, 1974.

[17] D. McLain, Two dimensional interpolation from ran-
dom data, The Computer Journal, 19:178–181, 1976.

[18] G. Wyvill, C. McPheeters, and B. Wyvill, Data struc-
ture for soft objects, Visual Computer 2:227–234,
1986.

8

