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ABSTRACT silhouette lines to be connected so as to simulate an artistic
effect of drawing long smooth strokes. Itis a non-trivial task

We present an efficient and robust algorithm for comput- to accomplish all these requirements in an efficient way.

ing the perspective silhouette on the boundary of a general  |n this paper, we present an efficient algorithm for com-

swept volume. We also construct the topology of connected puting the silhouette curves on the boundary of a general

components of the silhouette. As a three-dimensional ob- swept volume. Given a three-dimensional obj@gtmov-

ject moves along a trajectory, each instance of the mov- ing under a continuous affine transformati(t), its swept

ing object touches the envelope surface of the swept vol- volume is defined as), A(t)[0]. Sweeps are widely ac-

ume along a characteristic cur# — a curvek at timet. cepted as an effective design tool for creating highly com-
Moreover, the same instance of the moving object has its plex three-dimensional shapes [1].
silhouette curvel.! on its own boundary. The intersection Joy and Duchaineau [8] compute the boundary of a swept

K' n L* contributes to the silhouette of the general swept volume using a Marching Cube algorithm in thgz-space.
volume. We reformulate the problem as a system of two Kim and Elber [10] reformulate the problem as a polyno-
polynomial equations in three variables. Further, connected mial equation in three variables, which is considerably eas-
components of a silhouette curve can be constructed by de<er to compute. In either case, the boundary surface of a
tecting the cases where the two curvésandL’ intersect  swept volume is approximated by polygons. The silhouette
tangentially each other on the boundary surface of the mov- curves are then approximated by line segments. Instead of

ing object. using two steps, it is more efficient to generate the silhouette
curves in a single step.
1 Introduction There has been considerable research on developing ef-

ficient algorithms for computing the silhouettes of polyhe-

To give an artistic impression or to draw a conceptual image dral models (see Isenberg et al. [6] for a recent survey). The
of a geometric object, it is common to use line drawing tech- topological structure of silhouette curves is important not
niques, such as pencil, pen-ink drawing or hatching lines. only for a correct rendering but also for the analysis of the
Non-photorealistic rendering is thus quite popular in com- Shape. For a coherent stylizing of an animated object, the
puter graphics [5]. Automatic generation of artistic curves topological change of its silhouette plays an important role.
or lines is an important research topic in this area. Silhou- In @ recent work, Elber et al. [4] analyzed the topologi-
ettes are among the most important lines in describing thecal structure of silhouette curves and using the result they
shape of a three-dimensional object. Computation of sil- Solve the 2-piece mold separability problem in manufactur-
houette curves is needed in constructing the visible area ofing processes such as injection molding or die casting. In
an object, removing hidden curves, and performing back- computer vision, the topology of silhouettes has been in-
face culling, to mention only a few. Since silhouettes are Vesitgated for the construction of ttaspect graph2], a
view dependent, they should be reconstructed at each framestructure that provides all topologically distinct silhouette

of an animation. Furthermore, stylizing silhouettes requires configuations. Aspect graphs were mainly constructed for
polyhedral models. Kim and Lee [9] presented an algorithm

for computing the silhouette of a canal surface. In the cur-
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rent paper, we extend this result to the general swept vol-
ume.

At a fixed timet, the transformed objeet(¢)[O] touches
the envelope boundary surface along a characteristic curve,
K*. Moreover, letL! denote the silhouette curve of this ob-
ject from a view pointl3 (see Figure 1). The union of the
intersection pointd* N Lt generates the silhouette curves
on the boundary of the swept volumk? andL? are curves
located on the boundary surface of the objé¢t)[O]. The
number of intersection points changes through tangential
intersections betweek® and L*. A new loop of the sil-
houette curve may start when the two curveé and L?
intersect tangentially; or the construction of a closed loop
may be completed at such a tangential intersection. Thus
the tangential intersections betweat and L' are critical
events in the silhouette construction.

The main contribution of our work can be summarized
as follows:

e We generate the silhouette curves on the boundary of
a general swept volume;

e We construct the topology of connected components
of the silhouette curves.

The rest of this paper is organized as follows. In Section
2, we discuss the extraction of silhouette curves. Section 3
considers the topological structure of the silhouette curves.
Experimental results are presented in Section 4. Finally, in
Section 5, we conclude the paper.

2 Extraction of the Silhouette Curves

In this section, we compute the perspective silhouette curves P (b)
on the boundary of a general swept volume. We reduce ] .
the problem to that of solving two polynomial equations in Figure 1: () When an objec? moves under a continuous

three variables. affine transformatiom(t), the characteristic curv&® (in
Let O denote a three-dimensional object bounded by a Pold lines) touches the boundary envelope surface; (b) The
rational parametric freeform surfacgu, v), and letA(t) silhouette curvel.’ from a viewpointP is shown in bold

denote a continuous affine transformation. The swept vol- ines together withi* shown in gray.
ume of the objecO under the affine transformatioa(t)

is given asU; A(t)[O]. Assuminga < t < b, the bound- inthree variables, the solution set is a 2-manifold in a three-
ary surface of the swept volume consists of some patches ofdimensional space.
A(a)[S(u,v)] and A(b)[S(u, v)], together with the bound- The silhouette points on the boundary of the volume
ary envelope surface. The set of points on the envelope sur-A(t)[S(u, v)] from a view pointP satisfies the following
face is characterized by the following equation [10][11]: implicit equation:
F(u,v,t) G(u,v,t)
0S8 oS = -p =
— s a0 |G o || (A5 0] = P AGIN (. 0) =0, @
_— (1)  whereN(u,v) is the normal ofS(u, v). SinceN (u,v) =
95 x 95 js rational, the functiorz (u, v, t) is also rational.

That is, the Jacobian of the trivariate volumét)[S(u, v)] The common zero-set of Equations (1) and (2) produces 1-

vanishes on the envelope surface. Having a single constraintmanifold curves in thewt-space, which correspond to the
silhouette curves on the boundary of the swept volume.



Since F(u,v,t) = 0 and G(u,v,t) = 0 are rational
equations, their common zero-set can be computed in a high
robust manner using the convex hull and subdivision prop-
erties of rational spline functions. The computation proce-
dure is reasonably efficient. Solving two equations in three
variables, the result is a univariate curve in the-space,
which can be parameterized by a variakle

(u(s), v(s), t(s))-

See Elber and Kim [3] or Patrikalakis and Maekawa [12]
for more details of how to solve a systemmafpolynomial
equations im variables.

3 Topology of the Silhouette Curves

In the previous section, we reduced the silhouette construc-
tion to a problem of computing the common zero-set of two
polynomial equations in three variables. Now we consider
how to determine the topological structure of the silhouette
curves. For this purpose, we present an algorithm for con-

structing each connected component of the silhouette curve,

Consider a poinfu, v, t) in the common zero-set of Eqa-
tions (1) and (2). The physical meaning Bfu,v,t) = 0
is that the boundary surfacé(t)[S(u, v)] of a moving ob-
ject A(t)[O] touches the boundary envelope surface of a
swept volumeJ; A(¢)[O] along a characteristic curvg®.
Moreover, the conditiod(u, v, t) = 0 implies that the sur-
face pointA(t)[S(u,v)] is on the silhouette curvé’ on
the boundary of the object(¢)[0]. Thus the intersection
K*n L' includes the surface point(t)[S(u, v)]. Figure 1
shows the characteristic curvé’ and the silhouette curve
L' of a moving objectA(¢)[O] in bold lines. Under a con-
tinuous affine transformatior(t), the intersection points
in the setK* N L* trace out the whole silhouette curve on
the boundary of the swept volume.

Now we consider a connected componetits), v(s), t(s)),
(so < s < s1), in the common zero-set df (u,v,t) =
G(u,v,t) = 0. Either it forms a closed loop or it has an
endpoint att = 0 or¢t = 1. In the case of a closed loop,
there are at least tweextreme pointgu, v, t) on the loop,
which can be computed by solving the following system of
threee equations in three variables:

F(u,v,t) 0,
G(u,v,t) = 0,
H(u,v,t) = (VF xVG,(0,0,1)) =0. 3)

The physical meaning of &extreme point is that the two
curvesK'® andL! touch each other tangentially on the bound-
ary surface ofA(¢)[O]. (See the two curves at= ¢;_1, t; in
Figure 2.) The other case of having an endpoirit-at0, 1

can be handled by using the solutiofs v,¢) such that

t = 0,1 among the common zeros of Equations (1) and

).

ly

Figure 2: K is shown in light gray lines and? is in dark
gray lines fort;_; < t < t;. A silhouette curve in bold
lines which is the union ofC* N L, Vt € [t;_1,t;].
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Figure 3: A classification into three curve types which de-
termines the topology of the silhouette curves: (a) a loop,
(b) a curve with local extrema, and (c) a curve that-is
monotone. The outlined box represents the domain of the

parameter space.

The simultaneous solutions of Equations (1)—(3) corre-
spond to allt-extreme points in the common zero-set of
F(u,v,t) = G(u,v,t) = 0. These include locatextreme
points as well. Figure 3 shows three typical types of con-
nected components in the common zero-set. Figure 3(c)
shows a connected component with no lgeaktreme point;
but this component has both endstat 0,1. We define
three different types of connected components:

e A component offypelis a closed loop (Figure3(a)).

e A component offype2has some localextreme points
(Figure3(b)).

e A component ofType3 has no locak-extreme point.
Itis t-monotone (Figure3(c)).

Connected components are constructed by numerically trac-
ing the intersection curve'(u, v, t) = G(u,v,t) = 0, start-

ing from ¢-extreme points or endpoints with= 0,1. Al-
gorithm 1 summarizes the whole procedure of constructing
the silhouette curve.



Algorithm 1 of the silhouette curve was detected and constructed using

Input: _ t-extreme points in the common zero-set.
S5(u,v), A rational freeform surface; For a possible future direction, we consider an interac-
A(t), An affine transformation matrix; tive extraction of the silhouette curves when the viewpoint
P, The eye position; moves along a trajectory curve. To achieve this goal, we
Output: extend the algorithm for analyzing the topology of the sil-
A set of perspective silhouette curves of houette curves and present a new method to trace them in
A)[S(u,v)] from P; the parameter space instead of in a working space. We give
Begin a brief sketch of the algorithm.
F(u,v,t) < Assume that the viewpoint moves along a cufve-)

|A()[S(u, )] A(t) [Z2(u,v)] A(t) [ (u,v)]
Glu, v, t) < <A(t)[S(u,v)] — B, A1) [N(u, 11)]>;
H(u,v,t) < (VF x VG,(0,0,1));

; and the sweep surface is given as follows:

R(s,t) = UK (s)L(t) + T(1)]

Z, < the common zero-set df, G, and H; where K (s) denotes a rational characteristic curvet)
Z, <« the common zero-set df andG; represents a time-dependent non-singular linear transforma-
for each solution poing € Z, do tion andT'(¢) is a translation vector. Then, silhouette points
Numerically trace a connected componentgf on the sweep surface satisfy the following equation:
and classify its type;
Parameterize the component according to its type; I(s,t,r) =< R(s,t) — C(r), N(s,t) >=0, (4)
end
The other solution points af; are of Type 3; where N(S, t) is the normal vector of the sweep surface
Numerically trace each component starting from R(s,t). Please note that we define the sweep surface in
the solutions ofu, v, t) wheret = 0, 1; a more general way than the previous section.
return a set of silhouette curves; The zero-set OI(S7 t, ’I") = 0 is a 2-manifold surface in
End. three dimensionadtr parameter space. The intersections

between the 2-manifold surface and the- r. plane in the
parameter space correspond to the silhouette curves where
a viewpoint locates af’(r.). By numerically tracing the
intersection curves, we can extract the silhouette curves at
the corresponding eye position.

The topological structure of the silhouette curves is im-
portant in the tracing of the intersection curves. The number
of connected components of the silhouette curves and the
critical events when the new component appears or an ex-
isitng one disappears are required to be resolved before the
numeric tracing. Figure 6 shows a sweep surface and the

4 Experimental Results

We now present a few examples of computing silhouette
curves on the boundary of a general swept volume. Fig-
ure 4 shows the swept volume of an ellipsoid moving along
a linear trajectory under scale change. Its perspective sil-
houette curves are shown in bold lines (Figure 4 (b)). They
are both of type 2. Figure 4(c) shows the projection of the
zero-set on to thet-plane. Two more examples are shown

in Figure 5. The silhouette curves are applied to nonpho-

torealistic rendering of the boundary envelope surfaces of zero-set of Equation (4) for a given cur@&r). The critical
three-dimensional swept volumes. The execution times for €VeNts occur whes— and:—partial derivatives of (s, £, r)

the presented experiments are within one or two seconds 0r§|multaneously vanishdI (s, t,7)/0s = 0I(s,t,r)/0t =
a modern desktop PC. In Figure 6 (b), critical events are represented as green

sphere. Precomputation of the critical events makes the nu-
meric tracing algorithm more stable and efficient, which re-
sults in an interactive extraction of silhouette curves under
a moving eye position.
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Figure 4: (a) The envelope of a scaled ellipsoid along a linear trajectory and (b) its perspective silhouette curves. The
silhouette curves in thet-space is shown in (c). Two curve components of Type 2 are detected.
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Figure 5: (a) The envelope surface and its silhouette curves are shown in bold lines for a swept volume of an ellipsoid moving
along along a trajectory with scale change. (b) A tuba is modeled by sweeping a sphere and a torus.
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Figure 6: (a) A sweep surface and (b) the zero-set of Equation (4) as a 2-manifold surface. Critical events ocear when
andt—partial derivatives of (s, ¢, ) simultaneously vanish, which are shown as green spheres.
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