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ABSTRACT

We present an efficient and robust algorithm for comput-
ing the perspective silhouette on the boundary of a general
swept volume. We also construct the topology of connected
components of the silhouette. As a three-dimensional ob-
ject moves along a trajectory, each instance of the mov-
ing object touches the envelope surface of the swept vol-
ume along a characteristic curveKt – a curveK at timet.
Moreover, the same instance of the moving object has its
silhouette curveLt on its own boundary. The intersection
Kt ∩ Lt contributes to the silhouette of the general swept
volume. We reformulate the problem as a system of two
polynomial equations in three variables. Further, connected
components of a silhouette curve can be constructed by de-
tecting the cases where the two curvesKt andLt intersect
tangentially each other on the boundary surface of the mov-
ing object.

1 Introduction

To give an artistic impression or to draw a conceptual image
of a geometric object, it is common to use line drawing tech-
niques, such as pencil, pen-ink drawing or hatching lines.
Non-photorealistic rendering is thus quite popular in com-
puter graphics [5]. Automatic generation of artistic curves
or lines is an important research topic in this area. Silhou-
ettes are among the most important lines in describing the
shape of a three-dimensional object. Computation of sil-
houette curves is needed in constructing the visible area of
an object, removing hidden curves, and performing back-
face culling, to mention only a few. Since silhouettes are
view dependent, they should be reconstructed at each frame
of an animation. Furthermore, stylizing silhouettes requires
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silhouette lines to be connected so as to simulate an artistic
effect of drawing long smooth strokes. It is a non-trivial task
to accomplish all these requirements in an efficient way.

In this paper, we present an efficient algorithm for com-
puting the silhouette curves on the boundary of a general
swept volume. Given a three-dimensional objectO, mov-
ing under a continuous affine transformationA(t), its swept
volume is defined as∪tA(t)[O]. Sweeps are widely ac-
cepted as an effective design tool for creating highly com-
plex three-dimensional shapes [1].

Joy and Duchaineau [8] compute the boundary of a swept
volume using a Marching Cube algorithm in thexyz-space.
Kim and Elber [10] reformulate the problem as a polyno-
mial equation in three variables, which is considerably eas-
ier to compute. In either case, the boundary surface of a
swept volume is approximated by polygons. The silhouette
curves are then approximated by line segments. Instead of
using two steps, it is more efficient to generate the silhouette
curves in a single step.

There has been considerable research on developing ef-
ficient algorithms for computing the silhouettes of polyhe-
dral models (see Isenberg et al. [6] for a recent survey). The
topological structure of silhouette curves is important not
only for a correct rendering but also for the analysis of the
shape. For a coherent stylizing of an animated object, the
topological change of its silhouette plays an important role.
In a recent work, Elber et al. [4] analyzed the topologi-
cal structure of silhouette curves and using the result they
solve the 2-piece mold separability problem in manufactur-
ing processes such as injection molding or die casting. In
computer vision, the topology of silhouettes has been in-
vesitgated for the construction of theaspect graph[2], a
structure that provides all topologically distinct silhouette
configuations. Aspect graphs were mainly constructed for
polyhedral models. Kim and Lee [9] presented an algorithm
for computing the silhouette of a canal surface. In the cur-



rent paper, we extend this result to the general swept vol-
ume.

At a fixed timet, the transformed objectA(t)[O] touches
the envelope boundary surface along a characteristic curve,
Kt. Moreover, letLt denote the silhouette curve of this ob-
ject from a view point~P (see Figure 1). The union of the
intersection pointsKt ∩ Lt generates the silhouette curves
on the boundary of the swept volume.Kt andLt are curves
located on the boundary surface of the objectA(t)[O]. The
number of intersection points changes through tangential
intersections betweenKt andLt. A new loop of the sil-
houette curve may start when the two curvesKt and Lt

intersect tangentially; or the construction of a closed loop
may be completed at such a tangential intersection. Thus
the tangential intersections betweenKt andLt are critical
events in the silhouette construction.

The main contribution of our work can be summarized
as follows:

• We generate the silhouette curves on the boundary of
a general swept volume;

• We construct the topology of connected components
of the silhouette curves.

The rest of this paper is organized as follows. In Section
2, we discuss the extraction of silhouette curves. Section 3
considers the topological structure of the silhouette curves.
Experimental results are presented in Section 4. Finally, in
Section 5, we conclude the paper.

2 Extraction of the Silhouette Curves

In this section, we compute the perspective silhouette curves
on the boundary of a general swept volume. We reduce
the problem to that of solving two polynomial equations in
three variables.

Let O denote a three-dimensional object bounded by a
rational parametric freeform surfaceS(u, v), and letA(t)
denote a continuous affine transformation. The swept vol-
ume of the objectO under the affine transformationA(t)
is given as∪tA(t)[O]. Assuminga ≤ t ≤ b, the bound-
ary surface of the swept volume consists of some patches of
A(a)[S(u, v)] andA(b)[S(u, v)], together with the bound-
ary envelope surface. The set of points on the envelope sur-
face is characterized by the following equation [10][11]:

F (u, v, t)

=
∣∣∣∣A′(t)[S(u, v)] A(t)

[
∂S

∂u
(u, v)

]
A(t)

[
∂S

∂v
(u, v)

]∣∣∣∣
= 0. (1)

That is, the Jacobian of the trivariate volumeA(t)[S(u, v)]
vanishes on the envelope surface. Having a single constraint
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Figure 1: (a) When an objectO moves under a continuous
affine transformationA(t), the characteristic curveKt (in
bold lines) touches the boundary envelope surface; (b) The
silhouette curveLt from a viewpoint ~P is shown in bold
lines together withKt shown in gray.

in three variables, the solution set is a 2-manifold in a three-
dimensional space.

The silhouette points on the boundary of the volume
A(t)[S(u, v)] from a view point ~P satisfies the following
implicit equation:

G(u, v, t)

=
〈
A(t)[S(u, v)]− ~P , A(t)[N(u, v)]

〉
= 0, (2)

whereN(u, v) is the normal ofS(u, v). SinceN(u, v) =
∂S
du × ∂S

dv is rational, the functionG(u, v, t) is also rational.
The common zero-set of Equations (1) and (2) produces 1-
manifold curves in theuvt-space, which correspond to the
silhouette curves on the boundary of the swept volume.



SinceF (u, v, t) = 0 and G(u, v, t) = 0 are rational
equations, their common zero-set can be computed in a highly
robust manner using the convex hull and subdivision prop-
erties of rational spline functions. The computation proce-
dure is reasonably efficient. Solving two equations in three
variables, the result is a univariate curve in theuvt-space,
which can be parameterized by a variables:

(u(s), v(s), t(s)).

See Elber and Kim [3] or Patrikalakis and Maekawa [12]
for more details of how to solve a system ofm polynomial
equations inn variables.

3 Topology of the Silhouette Curves

In the previous section, we reduced the silhouette construc-
tion to a problem of computing the common zero-set of two
polynomial equations in three variables. Now we consider
how to determine the topological structure of the silhouette
curves. For this purpose, we present an algorithm for con-
structing each connected component of the silhouette curve.

Consider a point(u, v, t) in the common zero-set of Eqa-
tions (1) and (2). The physical meaning ofF (u, v, t) = 0
is that the boundary surfaceA(t)[S(u, v)] of a moving ob-
ject A(t)[O] touches the boundary envelope surface of a
swept volume∪tA(t)[O] along a characteristic curveKt.
Moreover, the conditionG(u, v, t) = 0 implies that the sur-
face pointA(t)[S(u, v)] is on the silhouette curveLt on
the boundary of the objectA(t)[O]. Thus the intersection
Kt ∩ Lt includes the surface pointA(t)[S(u, v)]. Figure 1
shows the characteristic curveKt and the silhouette curve
Lt of a moving objectA(t)[O] in bold lines. Under a con-
tinuous affine transformationA(t), the intersection points
in the setKt ∩ Lt trace out the whole silhouette curve on
the boundary of the swept volume.

Now we consider a connected component(u(s), v(s), t(s)),
(s0 ≤ s ≤ s1), in the common zero-set ofF (u, v, t) =
G(u, v, t) = 0. Either it forms a closed loop or it has an
endpoint att = 0 or t = 1. In the case of a closed loop,
there are at least twot-extreme points(u, v, t) on the loop,
which can be computed by solving the following system of
threee equations in three variables:

F (u, v, t) = 0,

G(u, v, t) = 0,

H(u, v, t) = 〈∇F ×∇G, (0, 0, 1)〉 = 0. (3)

The physical meaning of at-extreme point is that the two
curvesKt andLt touch each other tangentially on the bound-
ary surface ofA(t)[O]. (See the two curves att = ti−1, ti in
Figure 2.) The other case of having an endpoint att = 0, 1
can be handled by using the solutions(u, v, t) such that
t = 0, 1 among the common zeros of Equations (1) and
(2).

ti−1

ti

Figure 2:Kt is shown in light gray lines andLt is in dark
gray lines forti−1 ≤ t ≤ ti. A silhouette curve in bold
lines which is the union ofKt ∩ Lt,∀t ∈ [ti−1, ti].

(a) (b) (c)

t

vu

t

vu

t

vu

Figure 3: A classification into three curve types which de-
termines the topology of the silhouette curves: (a) a loop,
(b) a curve with local extrema, and (c) a curve that ist-
monotone. The outlined box represents the domain of the
parameter space.

The simultaneous solutions of Equations (1)–(3) corre-
spond to allt-extreme points in the common zero-set of
F (u, v, t) = G(u, v, t) = 0. These include localt-extreme
points as well. Figure 3 shows three typical types of con-
nected components in the common zero-set. Figure 3(c)
shows a connected component with no localt-extreme point;
but this component has both ends att = 0, 1. We define
three different types of connected components:

• A component ofType1 is a closed loop (Figure3(a)).

• A component ofType2has some localt-extreme points
(Figure3(b)).

• A component ofType3 has no localt-extreme point.
It is t-monotone (Figure3(c)).

Connected components are constructed by numerically trac-
ing the intersection curveF (u, v, t) = G(u, v, t) = 0, start-
ing from t-extreme points or endpoints witht = 0, 1. Al-
gorithm 1 summarizes the whole procedure of constructing
the silhouette curve.



Algorithm 1
Input:

S(u, v), A rational freeform surface;
A(t), An affine transformation matrix;
~P , The eye position;

Output:
A set of perspective silhouette curves of

A(t)[S(u, v)] from ~P ;
Begin

F (u, v, t) ⇐∣∣A′(t)[S(u, v)] A(t)
[

∂S
∂u (u, v)

]
A(t)

[
∂S
∂v (u, v)

]∣∣;
G(u, v, t) ⇐

〈
A(t)[S(u, v)]− ~P , A(t)[N(u, v)]

〉
;

H(u, v, t) ⇐ 〈∇F ×∇G, (0, 0, 1)〉;
Z0 ⇐ the common zero-set ofF, G, andH;
Z1 ⇐ the common zero-set ofF andG;
for each solution pointp ∈ Z0 do

Numerically trace a connected component ofZ1

and classify its type;
Parameterize the component according to its type;

end
The other solution points ofZ1 are of Type 3;
Numerically trace each component starting from

the solutions of(u, v, t) wheret = 0, 1;
return a set of silhouette curves;

End.

4 Experimental Results

We now present a few examples of computing silhouette
curves on the boundary of a general swept volume. Fig-
ure 4 shows the swept volume of an ellipsoid moving along
a linear trajectory under scale change. Its perspective sil-
houette curves are shown in bold lines (Figure 4 (b)). They
are both of type 2. Figure 4(c) shows the projection of the
zero-set on to thevt-plane. Two more examples are shown
in Figure 5. The silhouette curves are applied to nonpho-
torealistic rendering of the boundary envelope surfaces of
three-dimensional swept volumes. The execution times for
the presented experiments are within one or two seconds on
a modern desktop PC.

5 Conclusion and Future Work

In this paper, we have presented a robust and reasonably
efficient method for computing the perspective silhouette
of a general swept volume. We computed the silhouette
curves on the boundary envelope surface and also detected
all connected components of the silhouette. The silhouette
computation problem was reduced to a system of two poly-
nomial equations in three variables. Connected components

of the silhouette curve was detected and constructed using
t-extreme points in the common zero-set.

For a possible future direction, we consider an interac-
tive extraction of the silhouette curves when the viewpoint
moves along a trajectory curve. To achieve this goal, we
extend the algorithm for analyzing the topology of the sil-
houette curves and present a new method to trace them in
the parameter space instead of in a working space. We give
a brief sketch of the algorithm.

Assume that the viewpoint moves along a curveC(r)
and the sweep surface is given as follows:

R(s, t) = ∪[K(s)L(t) + T (t)],

whereK(s) denotes a rational characteristic curve,L(t)
represents a time-dependent non-singular linear transforma-
tion andT (t) is a translation vector. Then, silhouette points
on the sweep surface satisfy the following equation:

I(s, t, r) =< R(s, t)− C(r), N(s, t) >= 0, (4)

whereN(s, t) is the normal vector of the sweep surface
R(s, t). Please note that we define the sweep surface in
a more general way than the previous section.

The zero-set ofI(s, t, r) = 0 is a 2-manifold surface in
three dimensionalstr parameter space. The intersections
between the 2-manifold surface and ther = rc plane in the
parameter space correspond to the silhouette curves where
a viewpoint locates atC(rc). By numerically tracing the
intersection curves, we can extract the silhouette curves at
the corresponding eye position.

The topological structure of the silhouette curves is im-
portant in the tracing of the intersection curves. The number
of connected components of the silhouette curves and the
critical events when the new component appears or an ex-
isitng one disappears are required to be resolved before the
numeric tracing. Figure 6 shows a sweep surface and the
zero-set of Equation (4) for a given curveC(r). The critical
events occur whens− andt−partial derivatives ofI(s, t, r)
simultaneously vanish:∂I(s, t, r)/∂s = ∂I(s, t, r)/∂t =
0. In Figure 6 (b), critical events are represented as green
sphere. Precomputation of the critical events makes the nu-
meric tracing algorithm more stable and efficient, which re-
sults in an interactive extraction of silhouette curves under
a moving eye position.
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Figure 4: (a) The envelope of a scaled ellipsoid along a linear trajectory and (b) its perspective silhouette curves. The
silhouette curves in thevt-space is shown in (c). Two curve components of Type 2 are detected.
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Figure 5: (a) The envelope surface and its silhouette curves are shown in bold lines for a swept volume of an ellipsoid moving
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