
Towards Valid Parametric CAD Models

Christoph M. Ho�mann� and Ku-Jin Kimy

Department of Computer Sciences

Purdue University

March 16, 2000

In variational CAD design, parametric models may fail to regenerate raising

the question of which parameter values lead to valid models. The problem is

easy to state but di�cult to solve. Using a simpli�cation, we present an al-

gorithm that computes for a parametric model valid parameter ranges within

which the model will regenerate. We explain also why the general problem is

hard.

Keywords: Parametric design, CAD, constraints, generic design.

1 Introduction

Parametric CAD, originally pioneered by Parametric Technology's Pro/Engineer

system more than 10 years ago, has become an accepted paradigm for all major

CAD systems. Manufacturers use parametric CAD extensively in their product

models, and instantiate the resulting generic designs for various parameter and

constraint values. Ideally, such model variation may be used to model entire

product lines using a single set of generic models.

When parametric design is used for the highly complex models of parts and

assemblies, it is found that the instantiation for parameter values may fail. The

types of failures are diverse. When they are bugs in the CAD system, future

releases hopefully repair the situation. However, more often the failure to regen-

erate is related to the intrinsic nature of the chosen schema for parameterization

of the shape. That is, given a particular constraint and parameter schema, cer-

tain value combinations may not de�ne valid shapes. As a simple example,

consider the L-shapes planar \solid" of Figure 1. If d2 > d1, as happens on the

�Supported in part by ONR Contract N00014-96-1-0635, by NSF Grant CCR 99-02025,

and by ARO Contract 39136-MA.
yPartially supported by the Purdue Visualization Center and by Korea Science and Engi-

neering Foundation (KOSEF) Overseas Postdoctoral Fellowship Program in the second half of

the year 1998.

1

2d

1d

3d

4d

1d

4d

2d

3d

Figure 1: Left: generic L-shape with constraint schema. Right: failure to de�ne

a valid shape from chosen parameter values.

right, an improper solid is obtained. The failure to regenerate poses naturally

the question

Given a parametric solid and its constraint schema, what are the

valid ranges for its dimensional constraints and parameters?

This question is frequently asked by practicing CAD designers but has not been

addressed based on constructive constraint range investigations. It is eminently

at once a question of intense practical interest as well as of great theoretical

depth.

A related problem asks for a sound theoretical de�nition of a parametric

family of solids. This question is raised by Shapiro and Vossler in [9]. They

show the di�culties de�ning a parametric family by comparing it to the di�-

culties maintaining the consistency between constructive solid geometry (CSG)

and boundary representation (B-rep) models under the parametric and varia-

tional changes in dual system. To keep the consistency between parametric CSG

and B-rep models, their approach focuses on the conversion between those two

models. However, the natural parametric formulation of the boundary construc-

tion, in the sense of industrial CAD systems, coupled with the great di�culty

of constructing a CSG model from a boundary representation, makes this ap-

proach unattractive. Raghothama and Shapiro [8] present a way to keep the

consistency of the two representations without conversion between them. Their

approach is to verify each representation's validity at every step of an update.

In [6, 7], Shapiro and Raghothama make a formal de�nition for a boundary

solid. They de�ne a parametric family by a continuity principle that postulates

that, in a valid parameter range, small parameter changes lead to small changes

of the solid's boundary, employing an algebraic topology formalism. The formu-

lation is illuminating. However, this investigation does not help the practitioner

who �nds that his parametric model did not regenerate. In that situation, there

is no associated CSG model, hence no answer whether the regeneration failure

points to an erroneous model de�nition, an improper regeneration mechanism

of the CAD system, or a combination of the two.

In the CAD folklore, it is recommended to adhere to a stringent design

methodology which, like structured programming in programming languages,

2

d1

d2

d3

d4

d1

d2

d3

d4
d1

d2

d3

d4

d1

d2

d3

d4

(a) (b)

Figure 2: Example of parameterization for a set of constraints: (a) valid param-

eterization and (b) invalid parameterization

reduces the chances for failure. Clearly, design methodology may help, but

cannot avoid the question altogether.

In the general form described, the question of valid design parameter ranges

is too complicated to answer satisfactorily by a constructive algorithm. We

therefore narrow the question as follows:

Given a set of geometric elements in the plane de�ning a closed,

simple contour, and a set of constraints upon them by which it is to

be parameterized, what are valid values for the parameters?

Recall that a simple contour is one that does not have self-intersections, thus

de�nes topologically a closed disk without pinches. Moreover, we will call a set

of values valid if the resulting contours is closed and simple. Figure 2 shows

the example of valid and invalid values for parameters under the same set of

constraints.

A number of factors make even this restricted, more precise problem di�cult

to address in this generality. To wit, such a geometric de�nition of shape comes

about, upon solving for the speci�c constraint values, as solution of a nonlinear

system of algebraic equations [4]. Therefore, a speci�c set of values de�nes not

a unique shape, but possibly several, and the simple additional requirement to

select from this set one that is valid, in the sense just de�ned, leads at once to

an NP-complete problem [1]. So, we have to further restrict the question to be

addressed in this paper as follows:

Given a set of geometric elements in the plane de�ning a closed,

simple contour, and a set of constraints upon them by which it is to

be parameterized, and a set of values of the dimensional constraints

for which a valid solution has been constructed; within which range

may we change the dimension values continuously such that, for each

value combination, a valid shape is obtained from the current one?

3

That is, we have restricted ourselves to variants that are obtained by continuous

deformation of the current solution by the incremental change of dimensional

values within certain ranges that we wish to �nd. We now have a more tractable

problem, one that avoids, in particular, the di�culty arising from wanting to

select a valid solution from a set of mathematical solutions, a set that may be

exponential in size.

In this formulation, we expect that the problem will yield to a formulation

using nonlinear optimization. Moreover, the machinery for solving the problem

should identify a semi-algebraic set, and will be complicated, as will be a de-

scription of the set so found. Therefore, we propose to understand the variation

of the dimension values as happening one at a time, so that the description of

the solution reduces to a set of intervals, one for each dimensional parameter.

This is the problem we investigate in this paper.

It is well known that a fully constrained contour has several geometric re-

alization, a consequence of the nonlinearity of the underlying equations. This

multiplicity imposes limitations on any constructive investigation. For example,

when allowing line segments at any angle and distance constraints between any

two vertices, it has been shown that the related question whether a particular

set of parameter values permits a nonintersecting realization is NP-hard [3] .

In the rest of the paper, Section 2 de�nes the speci�c problem we are going

to solve and explains the key issues that have to be solved. In Sections 3 and 4,

we discuss the tree representation and visibility pair computations, respectively,

essential tools for solving the problem e�ciently. Section 5 provides the overall

algorithm and Section 6 gives the examples. Section 7 shows the performance of

the algorithm, and Section 8 shows how to apply this algorithm for continuous

use.

2 Preliminaries

We consider the following problem:

Problem: Given well-constrained rectilinear polygon P with only

vertical and horizontal distance constraints, �nd for each constraint

the range within which the distance may vary without changing the

original topology of P .

We consider this problem for the vertical constraints only, since the horizontal

constraints can be treated in the same way separately.

In this paper, we di�erentiate the topology of the rectilinear polygon as

follows. See the polygon P of Figure 3(a). When we change the value of d1
continuously, during d1 > d2, the topology of the polygon remains same with

the polygon P . But, when d1 = d2 (Figure 3(b)), the topology of the polygon is

4

di�erent from (a). When d1 < d2, this polygon (Figure 3(c)) also has a di�erent

topology from (a) or (b).

d1 d2 d1 d2
d1 d2

(a) (b) (c)

Figure 3: Three di�erent topologies when (a) d1 > d2, (b) d1 = d2, and (c)

d1 < d2

To solve above problem, we consider several issues. First, we decide whether

the polygon is well-constrained or not. Figure 4(a){(c) show examples of under-

constrained, over-constrained, and well-constrained rectilinear polygons with

vertical constraints, respectively. In Figure 4(a), the horizontal segments Hi and

Hj are not constrained with respect to the other horizontal segments. When

we add the vertical constraints vk and vl to it, the polygon is over-constrained

(Figure 4(b)). Figure 4(c) shows a case where the polygon is well-constrained.

The second issue we consider is to decide which horizontal segments move

together as a group when a particular vertical constraint is varied: When we

vary a vertical constraint, the set of horizontal segments S in the polygon is

split into two subsets S0 and S1, where S0 [S1 = S and S0 \ S1 = ;, and the

segments in S0 and in S1 move as a group, respectively. The split depends on

the constraint being varied. The permissible range of the vertical constraint is

governed by the possible range of motion for the sets S0 or S1. We have to

determine which segments in the two sets de�ne the limits of allowed motion.

Finally, we address a third issue: When we vary the constraint v0;10 in

Figure 5 and let the horizontal segment H0 move, then H0 can move up an

arbitrary distance, but moving down is restricted by the horizontal segment H1.

In this case, the possible range for changing the present value of v0;10 has the

lower limit H1:y �H0:y and the upper limit 1.

In other cases the range may be �nite. If we consider the vertical con-

straint v7;10, the segments split into S0 = fH1;H2;H6;H7;H8g and S1 =

fH0;H3;H4;H5;H9;H10g. Now the relative motion of H1 seems to be restricted

by H0 in the positive and by H2 in the negative direction. But H1 and H2 move

together; thus, we have to ignore H2 when determining limits. In fact, H1's

range of motion is restricted by H0 and H4. When we move the segments in

the set S0, for all �ve horizontal segments fH1, H2, H6, H7, H8g, we have to

compute ranges in this way and select their common intersection.

5

Hi

Hj

Hi

Hj

vk

vl

(a) (b) (c)

Figure 4: Under-constrained, over-constrained, and well-constrained polygons

H0

H1

H2

H3

H4 H5

H6

H7

H8

H9

H10

v7;10

v0;10

Figure 5: Example for varying one vertical constraint

6

In this paper, we present a simple and e�cient solution for the three issues

we have identi�ed. We will use a tree representation of the given rectilinear

polygon and visibility pair computations.

3 Tree Representation

We represent the given polygon by a graph as follows; see also Figure 6:

� Each horizontal segment Hi of the rectilinear polygon corresponds to a

node in the graph Ni.

� The vertical constraint vi;j between two horizontal segments Hi and Hj

corresponds to an edge Ei;j between two nodes Ni and Nj in the graph.

The following facts are obvious: when the polygon is under-constrained, the

graph is not connected (Figure 6(a)). If the polygon is over-constrained, the

graph has a cycle in it (Figure 6(b)). If and only if the rectilinear polygon is

well-constrained, the corresponding graph is a free tree (Figure 6(c)). In the

following, we assume that the polygon is well-constrained.

The tree representation is not only for verifying that the polygon is well-

constrained, but it also facilitates deciding which horizontal segments move

together. Splitting the set of horizontal segments S into S0 and S1 can be

determined from the tree as follows.

Consider varying the vertical constraint v7;10 (Figure 7(a)). The segments

H7 and H10 which are connected by v7;10 will be in the di�erent subsets because

their moving directions are opposite. After we put H7 into the set S0, let's

repeatedly add a segment H to S0, where H shares a vertical constraint with

an arbitrary segment in S0. We obtain S0 = fH1;H2;H6;H7;H8g. S1 will be

S1 = S n S0. In the tree representation, we cut the edge E7;10 corresponding

to vertical constraint v7;10 (Figure 7(b)). This splits the original tree into two

subtrees T0 and T1 whose vertices are the sets S0 and S1, respectively.

After so determining the subsets, we choose which subset should move. Here,

we choose the set of smaller size because moving the smaller set is more e�cient

than moving the larger set. In preparation for choosing the smaller set, we

�rst identify a suitable root in the tree. The root is chosen such that a node

minimizes the size of its largest subtree. This can be done by a simple pruning

algorithm as follows:

1. Assign 1 to each leaf as a value.

2. If N is a node and all but one adjacent node have a value, N is a candidate.

3. When Ni 2 assigned adjacent nodes of N and v(Ni) is the value of Ni,

select a candidate N such that v = 1 + �iv(Ni) is the minimum.

7

H1

H4

H0

H2

H3

H5

v0;2 v0;3 v0;5

v1;4

N0

N1

N4

N5

N3

N2

E0;2

E0;3

E1;4 E0;5

(a)

H1

H4

H0

H2

H3

H5

v0;2 v0;3 v0;5

v1;4

N0

N1

N4

N5

N3

N2

E0;2

E0;3

E1;4

E0;5

v4;5
E4;5

v1;2

E1;2

(b)

H1

H4

H0

H2

H3

H5

v0;3

v0;5

v1;5

N0

N1

N4

N5

N3

N2

E0;3

E1;5

E0;5

v4;5

E4;5

v0;2

E0;2

(c)

Figure 6: Example of tree representations

8

H1

H2

H3

H4 H5

H6

H7

H8

H9

H10

v7;10

H0

H11

v1;7 v1;2

N0

N1

N2

N4

N6

N7

N10

N8

N9

N3

N5

T0

E7;10

T1

N11

(a) (b)

Figure 7: Finding subset of horizontal segments to move

4. Remove N from the candidate set, and assign the value v to N .

5. Repeat steps 2 { 4 until all the nodes are assigned values. The node last

assigned a value is the root.

Before proving the validity of this algorithm, we consider the characteristic

of a root which minimizes the size of maximum subtree. Let's assume that there

is a tree with root R which has n children Ni, 0 � i < n, where each subtree

with root Ni has the size vi and vj � vj+1 (0 � j < n� 1) (Figure 8(a)). The

node R is a root which minimizes the maximum subtree size, if and only if

v0 � 1 + �1�i<nvi:

Notice that the value assigned to a node Ni is the size of the subtree with root

node Ni.

By contradiction, we prove that the root �nding algorithm always �nds a

root which minimizes the maximum subtree as follows. Let's assume that we

applied this algorithm to a free tree, and �nally we got a tree with root R

and subtrees Ti, where i = 0; � � � ;m, with m � 1 (see Figure 8(b)). When we

denote the size of the tree T as S(T), without loss of generality, we assume that

S(T0) � S(Ti), for each i, where i = 1; � � � ;m. When T0 consists of a root r0
and subtrees T0j , j = 0; � � � ; k, let's assume that S(T0) > �m

i=1S(Ti) + 1. Then

we know:

1. R was picked last, i.e. R was picked after r0 was picked.

9

R

N1N0 N2
Nn�1

v0

v1

v2
vn�1

(a)

R

r0

T01 T0k

T1

T2

Tm

(b)

Figure 8: Proof for root �nding algorithm

10

2. When r0 was picked, the trees Ti, i = 1; � � � ;m, were assigned values

already. If Ti was not assigned value yet, it implies that S(T0) < S(Ti).

This contradicts the assumption.

3. When r0 was picked, we could have picked R instead, because trees T1,

� � �, Tm were �nished.

4. Since S(T0) > �m
i=1S(Ti)+1, we must pick R before r0 and this contradicts

that R was picked last.

The last step shows that the assumption S(T0) > �m
i=1S(Ti)+1 cannot be true;

thus, we conclude that the root �nding algorithm is valid.

After applying this root �nding algorithm, the free tree T is converted to

a tree with root node R. When the edge Ei;j (between parent node Ni and a

child node Nj) is cut, there are two subtrees T0 and T1, where T0 is the subtree

whose root node is Nj and T1 = T � T0. Then, the size of the subtree T0 is

always smaller than or equal to the size of T1. Assume that the size of subtree

T0 is larger than that of T1. Then, the root R of the tree T does not minimize

the maximum subtree size because if we choose Nj as the root of the tree T ,

the maximum subtree size is smaller than the case when R is the root. This

assumption contradicts that we choose the root of the tree which minimizes the

maximum subtree size, so the size of the subtree T0 is always smaller than or

equal to that of the other subtree T1. Whenever we change the value of vertical

constraint vi;j, we consider the moving of the horizontal segments which are in

the subtree with root node Nj .

In order to determine quickly whether two segments move together or not,

we give two associated values (lval, rval) to each node in the tree:

lval =

8
<
:

postorder number; if the node is a leaf

lval of the leftmost child; otherwise

rval = postorder number.

When a node N in tree T has a node number (l1; r1), and a descendant node

of N has a node number (l2; r2), the values are always l1 � l2 � r2 < r1. If

there are two subtrees with root nodes numbered (li; ri) and (lj ; rj), and they

don't share any common node, the values are ri < lj or rj < li. We denote the

lval and rval of a node N by N:lval and N:rval, respectively.

The range of motion for horizontal segments in S0 is determined by the

closest distance to other horizontal segments in S1 that are visible in y direction.

Without considering the vertical constraints, let's assume that we move only one

horizontal segment H1 (see Figure 7). Then, the possible upwards limit of H1

is the distance between H1 and H0, and the possible downward limit of H1 is

the distance to H2. When we consider the vertical constraints, the situation is

11

di�erent. Depending on the vertical constraint which we want to vary, there is

a possibility that H1 and H0, or H1 and H2 will be in the same group to move

together. If we vary v1;2, H1 and H0 will move together, and if we vary v1;7,

H1 and H2 will move together. Let's assume that we move two segments H1

and H2 downwards together. When we only consider H1, H11 is not the closest

visible segment. But, when we move H1 and H2 together, H11 will be the closest

visible segment for them.

When we move a segment Hi, we consider all the visible segments in y

direction from it as the candidates which can give a restriction to Hi. So, for

each horizontal segment Hi, we will compute all the visible segments from Hi

in y direction, and add them to the visible segment list of Hi. The next section

explains the construction of the visible segment list.

4 Visibility Pair Computation

Suppose we have a set H = fH0;H1; � � �Hn�1g of horizontal segments in the

plane. Two segment Hi, and Hj inH are a visibility pair if there exists a vertical

line L that intersects Hi and Hj, but L does not intersect any other segment

of H between the intersections with Hi and Hj. The number of visibility pairs

is at most 3n� 6, and the optimal sequential algorithm to determine them has

time complexity O(n logn) [5].

There are several algorithms for computing visibility pairs; e.g., [2, 5]. We

apply the parallel algorithm of Chan and Friesen [2] in a sequential way.

After computing the visibility pairs, we construct two visibility segment

lists VSL(H)up and VSL(H)down for each horizontal edge H, where VSL(H)up
and VSL(H)down consist of the segments which are visible from H in positive

direction and in negative direction, respectively. Each node V in the visibility

segment list of Hi has the form: (seg; dist), where V:seg contains the segment

Hj which is visible from Hi, and V:dist contains the value Hj:y � Hi:y. We

sort the nodes in VSL(H)down by decreasing order, and those in VSL(H)up by

increasing order of V:dist. For each segment H, VSL(H)up and VSL(H)down
have pointers Up(H) and Down(H), respectively. Initially, these pointers point

to the �rst node of VSL.

Note that the (horizontal) visibility pairs cannot change when varying the

vertical constraints within permitted ranges because we require that the polygon

remain topologically unchanged.

5 Algorithm

Algorithm: ComputeRectRange(rectilinear polygon P) shows the over-

all procedure to compute varying ranges of vertical constraints for a given poly-

gon P . First, we construct a free tree T from the polygon P and its constraint

12

Algorithm: ComputeRectRange(rectilinear polygon P)

1. Construct free tree T for given rectilinear polygon P;

2. Determine the root of T, R;

3. Assign (lval, rval) to each node in T;

4. Construct initial VSL for each node in T;

5. for each child Ni of root node R of T do

ComputeRange(Ni);

Table 1: Algorithm: ComputeRectRange

schema. We pick a node as a root of T such that the maximum size of its

subtrees is minimized.

We assign the node number to each node in T as explained in Section 3.

Then, we compute the visibility pairs, and construct the initial visible seg-

ment list for each horizontal edges. For each node N in the tree, we call

ComputeRange(N) which computes the variable range of each edge in the

subtree with root N .

6 Example

Figure 9 shows an example of running ComputeRange on a polygon P . After

applying the �rst three steps

1. Construction of the free tree T for given polygon P ,

2. Determination of the root of T , and

3. Numbering the nodes of the tree T ,

we get the tree T of Figure 9(a).

After we compute the visible segment list (VSL) for each node in the tree,

we visit the tree nodes in depth-�rst order, and compute the range of verti-

cal constraints. For convenience of the explanation, we show the VSLup and

VSLdown for the nodes which are examined during the computation of the range

of a speci�c edge only. First, we compute the range of the vertical constraint

v1;2 (that is the edge between the node N1 and N2 in the tree T). Figure 9(b)

shows the VSL(N2), which is the only list which are examined for computing

the range of v1;2. The range of v1;2 has the upper limit 1 which is the minimum

gap value in the VSL(N2)up and the lower limit �2:5 which is the maximum gap

value in the VSL(N2)down. The pointers Up(N2) and Down(N2) point to the

13

Algorithm: ComputeRange (node N)

if N is a leaf node then begin

N:visit := TRUE;

E:range := (Up(N); Down(N)),

where E is the tree edge between N and its parent;

end

else begin

for each child node Ni of node N do begin

if Ni:visit = FALSE then

ComputeRange(Ni);

end

for each Ni 2 fN and its descendantsg do begin

while N:lval � V:lval � V:rval � N:rval (V is Up(Ni):seg) do

Up(Ni) := Up(Ni)! next;

while N:lval � V:lval � V:rval � N:rval (V is Down(Ni):seg) do

Down(Ni) := Down(Ni)! next;

end

E:range := (MinNi
(Up(Ni):dist);MaxNi

(Down(Ni):dist)),

where Ni 2 fN and its descendantsg

and E is the tree edge between N and its parent;

end

Table 2: Algorithm: ComputeRange

14

Operations Time Complexity

Free tree construction O(n)

Determining the root O(n logn)

Assignment of the node numbers to the tree O(n)

Construction of initial visible segment list O(n logn)

Computation of the range of vertical constraints O(dn)

Table 3: Performance of the Algorithm

minimum gap value of VSL(N2)up and the maximum gap value of VSL(N2)down,

respectively.

Figure 9(c) shows the status after we compute the range of v7;1. The VSL of

N1 and N2 are examined, and their Up and Down pointers point the minimum

and maximum values of the horizontal segments whose number is not covered

by the node number N1(0; 1). The upper limit of the range v7;1 is 2 which is

the minimum value from the values which Up pointers point to. Lower limit is

�2:5 which is the maximum value from the values which Down pointers point

to.

Figure 9(d) shows the status after computing of the range of v7;6 and v7;8.

Figure 9(e) shows the status after computing of the range of v10;7.

Finally, we will get the tree of Figure 9(f) which contains the ranges of all

vertical constraints and visible segment lists for all nodes in the tree.

7 Performance

Table 3 shows the performance of the algorithm. When the polygon has n hori-

zontal segments, the time complexity for free tree construction is O(n) because

there is a one-to-one correspondence between a horizontal segment (or a con-

straint) in the polygon and a node (or an edge) in the tree. Determination of

the root of the free tree will take O(n logn) time complexity. We assign the

node numbers to the rooted tree by a postorder traversal of the tree, so the time

complexity for assigning the node numbers to the rooted tree is O(n). When

we construct the initial visible segment list, we sort all horizontal segments by y

values, and then apply the divide-and-conquer method to construct the visible

segment list for each segment. We need O(n logn) time for this construction,

and O(dn) time for computing the range of each vertical constraint, where d is

the height of the tree.

15

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H0

H11

(0; 11)

(0; 4)

N2

(0; 1)
N6 N8

N0

N4

N9

N3

N5

N11

y

x0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

N7

N1

(2; 2) (3; 3)

(0; 0) (5; 5)

(5; 6)
(7; 7)

(9; 9)

(5; 8)

(10; 10)

N10

(a)

(0; 11)

(0; 4)

N2(0; 0)

(0; 1) N6 N8

N0
N4

N9N3

N5(5; 5)

N11
N7

N1

(2; 2) (3; 3) (5; 6) (7; 7)

(9; 9)(5; 8) (10; 10)

N10

V SL(N2)up

V SL(N2)down

H1(0; 1) 1

H6(2; 2) �5H4(5; 8) �2:5

Up

Down

v1;2

range : (1;�2:5)

(b)

Figure 9: Example of applying the algorithm

16

V SL(N1)up

V SL(N1)down

H0(9; 9) 2

H11(10; 10) �2:5H2(0; 0) �1

H4(5; 8) �3:5 H7(0; 4) �7:5

Down

Up

(0; 11)

(0; 4)

N2(0; 0)

(0; 1) N6 N8

N0
N4

N9N3

N5(5; 5)

N11
N7

N1

(2; 2) (3; 3) (5; 6) (7; 7)

(9; 9)(5; 8) (10; 10)

N10

V SL(N2)up

V SL(N2)down

H1(0; 1) 1

H6(2; 2) �5H4(5; 8) �2:5

Up

Down

v7;1

range : (2;�2:5)

(c)

(0; 11)

(0; 4)

N2

(0; 1)

N6

N8(3; 3)

N0

N4

N9N3

N5

N11

N7

N1

(2; 2)

(0; 0)
(5; 5)

(5; 6) (7; 7)

(9; 9)

(5; 8)

(10; 10)

N10

V SL(N6)up

V SL(N6)down

H4(5; 8) 2:5

H9(7; 7) �5H7(0; 4) �1:5

H2(0; 0) 5 H0(9; 9) 8

V SL(N8)up

V SL(N8)down

H7(0; 4) 2

H9(7; 7) �1:5

Down

Up

Up

Down

v7;6

range : (2:5;�1:5)

v7;8 range : (2;�1:5)

(d)

Figure 9: (Continued)

17

(0; 11)

(0; 4)

N2

(0; 1) N6

N8

N0

N4

N9N3

N5

N11

N7

N1

(2; 2)

(3; 3)

(0; 0)
(5; 5)

(5; 6) (7; 7)

(9; 9)
(5; 8)

(10; 10)

N10

V SL(N2)up

V SL(N2)down

H1(0; 1) 1

H6(2; 2) �5H4(5; 8) �2:5

V SL(N6)up

V SL(N6)down

H4(5; 8) 2:5

H9(7; 7) �5H7(0; 4) �1:5

H2(0; 0) 5 H0(9; 9) 8

V SL(N8)up

V SL(N8)down

H7(0; 4) 2

H9(7; 7) �1:5

V SL(N1)up

V SL(N1)down

H0(9; 9) 2

H11(10; 10) �2:5H2(0; 0) �1

H4(5; 8) �3:5 H7(0; 4) �7:5

V SL(N7)up

V SL(N7)down

H6(2; 2) 1:5

H10(0; 11) �5:5H8(3; 3) �2

H1(0; 1) 7:5H11(10; 10) 5

Up

Down

Down

Up

Up

Down

Down

Up

Up

Down

v10;7

range : (2;�1:5)

(e)

N2

N6 N8

N0

N4

N9

N3

N5

N11

N7

N1

N10

(2;�2:5)
(2:5;
�1:5)

(1;�2:5) (3;�8)

(4;
(1:5;�2)

(2;�1:5) (1:5;
�2)

(1;

�2)

(2:5;�5)

�8)

(2:5;
�1:5)

(f)

Figure 9: (Continued)

18

8 Changing Several Vertical Constraints

Given the polygon of Figure 9(a), let's assume that a user changed the value of

the vertical constraint v7;1 as much as k, k > 0 (k < 0). Then, the horizontal

segments H1 and H2 will move downwards (upwards) as much as jkj.

The user may want to change the value of another vertical constraint also.

The visible segment lists of the nodes whose corresponding horizontal segment

were moved are not valid longer because the dist values related to the moved

horizontal segments are invalid now. But, the �eld of seg in each node of

visible segment lists are valid always because we require that the polygon remain

topologically unchanged. We only need to update the dist value of the visual

segment lists for the node N , where N is a node for the horizontal segments in

the visible segment list of N1 or N2.

The modi�ed lists should be sorted again by new dist values in it. We

initialize the all pointers Up and Down to the �rst element of each list, then we

can compute the valid range for each vertical constraint again.

References

[1] W. Bouma, I. Fudos, C. Ho�mann, J. Cai, and R. Paige. A geometric

constraint solver. Computer Aided Design, 27:487{501, 1995.

[2] I. W. Chan and D. K. Friesen. Parallel algorithm for segment visibility

reporting. Parallel Computing, 19(9):973{978, September 1993.

[3] I. Fudos and C. M. Ho�mann. A graph-constructive approach to solving sys-

tems of geometric constraints. ACM Transactions on Graphics, 16(2):179{

216, April 1997.

[4] C. M. Ho�mann and R. Joan-Arinyo. Symbolic constraints in constructive

geometric constraint solving. J of Symbolic Computation, 23:287{300, 1997.

[5] E. Lodi and L. Pagli. A VLSI solution to the vertical segment visibility

problem. IEEE Transactions on Computers, 35:923{928, 1986.

[6] S. Raghothama and V. Shapiro. Necessary conditions for boundary represen-

tation variance. In Proceedings of the 13th International Annual Symposium

on Computational Geometry (SCG-97), pages 77{86, New York, June 4{6

1997. ACM Press.

[7] S. Raghothama and V. Shapiro. Boundary representation deformation in

parametric solid modeling. ACM Transactions on Graphics, 17(4):259{286,

October 1998.

19

[8] S. Raghothama and V. Shapiro. Consistent updates in dual representation

systems. In Willem F. Bronsvoort and David C. Anderson, editors, Proceed-

ings of the Fifth Symposium on Solid Modeling and Applications (SSMA-99),

pages 65{75, New York, June 9{11 1999. ACM Press.

[9] V. Shapiro and D. L. Vossler. What is a parametric family of solids? In

SMA '95: Proceedings of the Third Symposium on Solid Modeling and Ap-

plications, pages 43{54. ACM, May 1995. held May 17-19, 1995 in Salt Lake

City, Utah.

20

