Basic Theory and Applications of EPR

Applications of EPR for Geology
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"But don't you see what this implies? It
means that there is a fourth degree of

freedom for the electron. It means that
the electron has spin, that it rotates."

- George Uhlenbeck to Samuel Goudsmit in 1925 on
hearing of the Pauli principle -
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"There are spins everywhere'" is now a well known quote amongst EMR
spectroscopists. It is born out by the huge list of topics at the right hand side. In
some of these the use of EMR techniques is obviously minimal, history for
example, in others such as biochemistry EMR's influence has been seminal. In
topics such as imaging EMR is advancing at a rapid pace, particularly with
recent advances in instrumentation and computing power. For at least the next
ten years we will see EMR following in the footsteps of NMR in
instrumentation - moving to higher field/frequency machinery, and with a move
from continuous wave (cw) to fourier transform (ft) measurements, possibly
even eclipsing the former in time. This will extend the list of topics even further.
Another crumb from the physicist's plate will shortly be available - the use of
force balence methods will enable the measurement of single spins on surfaces -
the ultimate in detection sensitivity. There are also exciting arguments afoot
among physicists concerning the very nature of the electron, (New Scientist, 14th
October 2000, pp25), Humphrey Maris of Brown University says he thinks he
can cut an electron in two! ”

- John Maher -
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October 2000, pp25), Humphrey Maris of Brown University says he thinks he
can cut an electron in two! ”
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Applications

Anthropology, Archeology, Biochemistry, Biology, Chemical Reactions,
Clusters, Colloids, Coal, Dating, Dosimetry, Electrochemistry, EPR Imaging,
Excitons, Ferromagnets, Forensic Science, Gases, Gemmology, Geography,

Geology, Glass, History, Inorganic Radicals, Materials Science, Medicine,
Metal Atom Chemistry, Metalloproteins, Microscopy, Mineralogy, Organic
Radicals, Organometallic Radicals, Paleontology, Photochemistry,
Photosynthesis, Point Defects, Polymers, Preservation Science, Quantum
Mechanics, Radiation Damage, Semiconductors, Spin Labels, Spin Traps,
Transition Metals, Zoology




EPR Methodologies
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These are just scratches of modern EPR techniques.
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What is EPR ?

Electron Pramagnetic Resonance (EPR)
Electron Spin Resonance (ESR) EPR ~ ESR ~ EMR
Electron Magnetic Resonace (EMR)

higher energy state (mg = 2)

—
4
N

lower energy state (mg = -1/2)

“Electron Zeeman Interaction”




What is EPR ?

EPR is the resonant absorption of microwave radiation
by paramagnetic systems in the presence of an applied magnetic field.

higher energy state (mg = 2)

ower energy state (mg = -1/2)

hv (microwave)

“Electron Zeeman Interaction”

What is EPR ?

S=1/2

B
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mg=+1/2

T hv(=gBB,)

/\<

mg=-1/2

I Planck’s constant (6.626196 x 1027 erg.sec)

v frequency (GHz or MHz)

g g-factor (approximately 2.0)
B Bohr magneton (9.2741 x 102! erg.Gauss™)

B, magnetic field (Gauss or mT)

Selection Rule
AMg = £1

Sweep Coils

100kHz Modulation

Conventional CW EPR spectrometer Arrangement

“Electron Zeeman Interaction”




What is EPR ?

4ms

=+1/2

T hv(=gBB,)

mg=-1/2

& Planck’s constant (6.626196 x 1027 erg.sec)

v frequency (GHz or MHz)
g g-factor (approximately 2.0)

B Bohr magneton (9.2741 x 102! erg.Gauss™)

B, magnetic field (Gauss or mT)

Selection Rule
AMg = £1

Bruker EMX EPR spectrometer

“Electron Zeeman Interaction”

What is EPR ?

S=1/2

mg=+1/2

T hv(=gBB,)
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I Planck’s constant (6.626196 x 1027 erg.sec)

v frequency (GHz or MHz)
g g-factor (approximately 2.0)

B Bohr magneton (9.2741 x 102! erg.Gauss™)

B, magnetic field (Gauss or mT)

Selection Rule
AMg = £1

“Electron Zeeman Interaction”




What is EPR ?
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e <: T hv (= gBB,)

N m=-1/2

& Planck’s constant (6.626196 x 1027 erg.sec)
v frequency (GHz or MHz)
g g-factor (approximately 2.0)

B Bohr magneton (9.2741 x 102! erg.Gauss™) P
B, magnetic field (Gauss or mT) Magnetlc Field (Bo)

Selection Rule
AMg = £1 “Electron Zeeman Interaction’
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What is g ?

F T

It is an inherent property of a system containing an F ia) |'lnl|| 9.60 GHz

unpaired spin. S ay

electron) has been calculated and experimentally

determined. It is 2.0023192778 = 0.0000000062 (=
g.). The g value for an S = 1/2 system is usually -
near g, but it is not exactly at g, Why not? Q,Qp

3 e
Similar to the chemical shift observed in an NMR el | . .
spectrum. ::_;”_'"'
The g value for a single unpaired electron (fiee i Qg
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This is due to spin orbit coupling which determines L., . L

both the value of g and its anisotropy (how far the 3 0341 04 0343 0344 0345
e Magnetic Fied, B [T]

g values are from g, . The g value can often be

calculated and the value is characteristic for a
particular spin system. [ O """ o m-radical
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Powder Patterns of EPR Spectra

Isotropic g: g, =g, =g,

f —

e = (g,7sin?Bcos?Pt-g 2sin?Bsin’d+g,*cos?6)! 2 ‘ | :

Powder: randomly oriented samples such

as frozen solutions, powders

!
|

Rhombicg: g # g * g,

N
Z'———-”- Even though we talk about g,, g, and g,
r s = the values should be more properly called

& 8 and g; unless we have evidence for
the nature of the g tensor relative to the
molecular axes.

Axialgig =g + g,




Powder Patterns of EPR Spectra
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In solution: when molecules are rapidly
tumbling (within microwave time scale),
g-anisotropy is averaged out.
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Electron spin — Nuclear spin Interaction

Electron

Isotope Nuclear Spin (I} % Abundance

1H 1/2 99.9
H 1 0.02
12c L] 98.9
L o 172 1.1
1N 1 99.6
15N 1/2 0.37
160 0 99.8
170 5/2 0.037
g 1] 95.0
g 32 0.76
sty 742 99.8
35Mn 512 100
S6F, 0 91.7
57Fe 1/2 2.19
S9Co 712 100

SBNi & 60N 0 68 & 26
SINi 3/2 1.19

63Cu & 65Cu 3r2 69 & 31
95Mo & Mo 512 16 & 9
183w 1/2 14.4

“Hyperfine Interaction”

Electron spin — Nuclear spin Interaction

m=+%, m=+"%
T = m,=+%, m=-Y%
S=1/2 | —=2— hv(=AE)
R — m=- Yo, mp=-"
/ mg=-"%, m=+%
Absorp [A=A—A\_
B,

|H=pSgH + SAT

Selection Rule
AMg = £1; AM, =0

S=Ya;
1=
Doublet

hfc (=A)

Magnetic Field —

hfc: hyperfine coupling constant

“Hyperfine Interaction”




Electron spin — Nuclear spin Interaction

EIeC;tron Nucleu
S(%2) 1 (%)
MS=+1/2 M|=+1/2
K . M|='1/2
Ms= =+ VZ
M3:-1/2 M|=-1/2
__ M|=+1/2

Selection Rule
AMg = £1; AM, =0

S=Ya;
1=
Doublet

hfc (=A)

Magnetic Field —

hfc: hyperfine coupling constant

“Hyperfine Interaction”

Electron spin — Nuclear spin Interaction

lectron Nucleus
S (%) I (1)
=17 =0,£ 12"
MS__'_%::_- M|=+1
M=0
Ms=+%.
M,=-1
M :_—y |
:'. S 2{; MI= 0
L M=+1

Selection Rule
AMg = £1; AM, =0

\Q S=Y;
=1
ll‘l Triplet
Q
hfc hfc
D> —>

Magnetic Field —

“Hyperfine Interaction”




Electron spin — Nuclear spin Interaction

4 Nuclei
I (%2)

T T M=+4R2
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H H
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0= ° 1=1/2x4
H H Quintet
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R
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Pascal’s triangle

So far, we have considered the cases of hyperfine interactions in solutions or in the samples with
very narrow g-anisotropy. How about powder samples?

Electron spin — Nuclear spin Interaction

For ¢INi, I = 3/2, so you expect
(and see) 4 lines.

But the hyperfine splitting is
unresolved in the g, direction.

COOH

_1=[200, 50. 50] MHz Sim
Note that the center of
the pattern is the g-value
natl.
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So far, we have considered the cases of hyperfine interactions in solutions or in the samples with
very narrow g-anisotropy. How about powder samples?




Electron spin — Nuclear spin Interaction

(a) experiment

Sim axial S=1/2

Intensity

Superhyperfine Splitting

S
S=1/2; 1=3/2

— 1=l

Sim axial S=1/2 Sim axial S=1/2

A I coupling, AL and A I
due to [=3/2 coupling, due to I=3/2

Intensity

N — T ———
50000 26H0.00  IBG0.00 304000 322000 340000 250000 Z680.00  2R6000 304000  3I20.00  3e00.00

Magnetic Field Magnetic Field

“Hyperfine Interaction”

Electron spin — Nuclear spin Interaction
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V304(hshz),(OL),

2500 3000 3500 4000
Field Strength (G)

“Hyperfine Interaction”




Electron spin — Electron spin Interaction

When there is more than one unpaired electron (S>1/2), the interaction between the
spins must be considered. This term can be very large. The Hamiltonian for a system
with a spin > 1/2 is: H=D [S? - 1/3 S(S+1) +E/D (S? - Syz)/ +g,BS H

The new terms are D and E/D. D is called the zero-field splitting (ZFS) parameter,
E/D is the rhombicity (the ratio between D, the axial splitting parameter, and E, the
rhombic splitting parameter, at zero field). The minimum value of E/D is 0 for an axial
system. The maximum value is 1/2 for a rhombic system. The strength of the ZFS is
determined by the nature of the ligands.

So for a completely axial system (E/D =0), H=D [S?-1/35(S+1)] +g,fSH
Consider a case where S = 3/2, i.e., 4 unpaired electrons. These spins can interact to
give a total spin moment, referred to as a system spin. There will be four sublevels for

m,, where S, =-3/2, -1/2, 1/2, and 3/2.

The energy for the + or -3/2 level will be: D[9/4-1/3(3/2*5/2)]= D[9/4-5/4]= D
The energy for the + or - 1/2 level will be: -D.

Electron spin — Electron spin Interaction

Yl Half integer spin and axial ZFS symmetry -D >> hv
) - The magnitude of

+9/2 —— g=18,0,0 S=9/2 —— the ZFS can be
determined by EPR.
The populations of
each of the doublet
has a Boltzmann
distribution. By
g=14,0,0 S=72 — lowering the
temperature to the
same energy range
as the ZFS and by
measuring the EPR
g= 10, 0,0 §=5/2 amplitude of each
doublet, a value of
the ZF'S can be
S=3/2 obtained.

8D

g=6,0,0

Or we can measure

g=2,4,4 AMs = £1
—= | transitions, such as
+12 —— g=2,2,2 g=2,6,6 +5/2 < +3/2, at
m higher fields.

g=2,10,10

1Y,

Magnetic Field —




Interactions measured by EPR

| H=pBSgH + SAT+ D[S, *1/3 S(S+1) + E/D(S 2-S ) |

Hyperfine and superhyperfine interactio

/

Spin-spin interaction

* Nuclear quadrupole interation can also be detacted.

* High sensitivity (<1 uM to 0.1 mM)

* No background
* Definitive and Quantitative

(electron spin-nuclear spin interaction)

Applications — Minerals
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Applications — Minerals

Radiation Effects & Defects in Solids . r
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Applications — Minerals
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Applications — Minerals
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Rhyolite from the “Yellow Stone of Nevsehir™ and y-irradiated trona from the Ankara Mine have
been investigated by electron paramagnetic resonance at ambient temperature and at 113 K. Rhyolite
was examined by X-ray powder diffraction and found to consist mainly of SiOy. Before y-irradiation.
the existing paramagnetic species in rhvolite were identified as PO3~. CH,OH. CO,. S0, CO3
and €O, free radicals and Fe'* at ambient temperature. At 113 K SO, CO1 ,and CO1 radicals
and Fe'™ were observed. The y-irradiation produced neither new species nor detectable effects on
these free radicals. The disappearance of some of the radicals at 113 K is attributed to the freezing of
| Their motions. Before y-irradiation, the trona mineral shows only Mn?t lines, but after y-irradiation

::,lllhr it indicated the inducement of CO;™ and CO, radicals at ambient temperature, TT3 K, in addition to
which| the Mn“" lines. The g and a values of the species were determined.
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Applications — Diamonds

http://www2.warwick.ac.uk/fac/sci/physics/research/condensedmatt/diamond/

EPR and Diamond Research Group

Our research group specialises in the development of Electron Paramagnetic Resonance (EPR) and optical spectroscopic
methods, and applies these techniques in the study of diamond and other materials/systems.

Current Research activities include:

HIGH PRESSURE ELECTRON PARAMAGENTIC RESONANCE
CARBON BASED ELECTRONICS A NATIONAL CONSORTIUM
ELECTRICALLY ACTIVE DEFECTS AND CARRIER TRAPPING IN SEMICONDUCTING DIAMOND

HIGH PRESSURE HIGH TEMPERATURE MATERIALS PR|
DIAMOND RESEARCH ON INTERFACES FOR VERSATI
PhD studentships available for September 2006 - contact Mark
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Applications — Diamonds

By Comacmn. Maer 14 43003) 11T51-11%0 P SR 5301
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Abstract
Measurements  of the  election  paramagnetic  resonance  (EPR)  upon
mon are reported on Niodefects in diamonds grown with Ni-
The temperature dependence of the WS EPR
spectrum phaotogquenching shows thit the relaxation of substitution:
ehectron wnizabion s very small, ng the mterpretat
previously reporied photoinduced effects with thresholds at 2.5 and 3.0 ¢V
correspond o wo complementary photmon zation (e nvolving Ni,.
Photoindueed behaviour of the NIRIM I EPR centre favours the interstitial Nif
mandel for this defect and suggests that the Nn? “levelis located at 1. 98£0.03 eV
below the conduction band. In N-doped diamond, N is more likely to appear
i the neutral state, undetectable by reas ol subsiiutional sites Nif
is revealed.  Otbservation of a \lrun phatoguenc
simull ol dilferent
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