

Symmetry Operation and Symmetry Elements

- Symmetry Operation: A well-defined, non-translational movement of an object that produces a new orientation that is <u>indistinguishable</u> from the original object.
- □ **Symmetry Element:** A point, line or plane about which the symmetry operation is performed.

Four kinds of Symmetry Elements and Symmetry Operations Required in Specifying Molecular Symmetry

Proper (rotation) axis (C_n)
 Mirror plane (σ)
 Center of symmetry or center of inversion (*i*)
 Improper (rotation) axis (S_n)

Four kinds of Symmetry Elements and Symmetry Operations Required in Specifying Molecular Symmetry (1)

Proper (rotation) axis (C_n): Rotation about C_n axis by 2π/n n-fold symmetry axis. A C_n axis generates n operations.

 C_4 and C_2

* Principal rotational axis: highestfold rotational axis. If more than one principal axes exist, any one can be the principal axis.

*1: E : Identity (x1) *2: Right-handed rotation

Four kinds of Symmetry Elements and Symmetry Operations Required in Specifying Molecular Symmetry (1)

Proper (rotation) axis (C_n):

Rotation about C_n axis by $2\pi/n$ n-fold symmetry axis. A C_n axis generates n operations.

Cross section of protein disk of tobacco mosaic virus

Four kinds of Symmetry Elements and Symmetry Operations Required in Specifying Molecular Symmetry (2)

 \square Mirror plane (σ): Reflection about the σ plane

Four kinds of Symmetry Elements and Symmetry Operations Required in Specifying Molecular Symmetry (2)

Mirror plane (σ): Reflection about the σ plane

*σ_h: mirror planes perpendicular to the principal axis.
*σ_v: mirror planes containing the principal axis *Unless* it is σ_d.
*σ_d: mirror planes bisecting x, y, or z axis or bisecting C₂ axes perpendicular to the principal axis.

How to define molecular axes (x, y, z)?

1. The principal axis is the z axis.

2. If there are more than one possible principal axis, then the one that connects the most atoms is the z axis.

3. If the molecule is planar, then the z axis is the principal axis in that plane. The x axis is perpendicular to that plane.

4. If a molecule is planar and the z axis is perpendicular to that plane, then the x axis is the one that connects the most number of atoms. (Actually, 3, 4 are arbitrary.)

Four kinds of Symmetry Elements and Symmetry Operations Required in Specifying Molecular Symmetry (3)

□ Center of symmetry or center of inversion (*i*) : Inversion of all objects through the center.

Four kinds of Symmetry Elements and Symmetry Operations Required in Specifying Molecular Symmetry (4)

□ Improper (rotation) axis (S_n) : Rotation about an axis by $2\pi/n$ followed by a reflection through a plane perpendicular to that axis or *vice versa*.

Four kinds of Symmetry Elements and Symmetry Operations Required in Specifying Molecular Symmetry (4)

- □ Improper (rotation) axis (S_n) : Rotation about an axis by $2\pi/n$ followed by a reflection through a plane perpendicular to that axis or *vice versa*.
 - S_n generates n operations for even n and 2n operations for odd n.

TABLE 4.2	Groups of Low Symmetry		
Group	Symmetry	Examples	
<i>C</i> ₁	No symmetry other than the identity operation	CHFCIBr	$F \xrightarrow{C} Br$
Cs	Only one mirror plane	H ₂ C=CClBr	H C=C Br
Ci	Only an inversion center; few molecular examples	HClBrC — CHClBr (staggered conformation)	H C C C C C C C C C C C C C C C C C C C

© 2011 Pearson Education, Inc.

Group	Description	Examples	\rightarrow Only S_n (n even) axis: S_4 , S_6 , S_6
$C_{\infty v}$	These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They do not have a center of inversion.	C _∞ → H—Cl	nsequence of S_{2n}) Step 3 $n C_2$'s axes \perp to C_n
D∞h	These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They also have perpendicular C_2 axes, a perpendicular reflection plane, and an inversion center.	$C_{\infty} \rightarrow 0 = C_{2}$	$ \begin{array}{c c} & & & \\ \mathbf{\sigma}_h & n \mathbf{\sigma}_d \mathbf{\hat{s}} & n \mathbf{e}_d \\ \mathbf{\phi} & & \mathbf{\phi} \\ \mathbf{\phi} & & \mathbf{\phi} \\ \mathbf{D}_{nh} & \mathbf{D}_{nd} & \mathbf{f} \end{array} $
T _d	Most (but not all) molecules in this point group have the familiar tetrahedral geometry. They have four C_3 axes, three C_2 axes, three S_4 axes, and six σ_d planes. They have no C_4 axes.	H H H H	
O _h	These molecules include those of octahedral structure, although some other geometrical forms, such as the cube, share the same set of symmetry operations. Among their 48 symmetry operations are four C_3 rotations, three C_4 rotations, and an inversion.	F = F = F	
lh	Icosahedral structures are best recognized by their six C ₅ axes, as well as many other symmetry operations—120 in all.		
		B ₁₂ H ₁₂ ^{2—} with BH at each vertex of an icosahedron	

© 2011 Pearson Education, Inc.

TABLE 4.4 Fur	rther Exa	er Examples of C and D Point Groups					
General Label	Point G	Froup and Example					
C _{nh}	C _{2h}	difluorodiazene	F_N=N_F				
	C _{3h}	B(OH) ₃ , planar					
C _{nv}	C_{2v}	H ₂ O	H H				

© 2011 Pearson Education, Inc.

TABLE 4.4 Further Examples of C and D Point Groups—continued								
General Label	Point	Group and Example						
	C _{3v}	PCI ₃	CI P	`CI				
	C _{4v}	BrF ₅ (square pyramid)	F F Br	.F ⁴F				
	$C_{\infty v}$	HF, CO, HCN	H-F	$C \equiv 0$	$H-C\equiv N$			
Cn	C ₂	N ₂ H ₄ , which has a <i>gauche</i> conformation	H H	N H				
	C ₃	P(C ₆ H ₅) ₃ , which is like a three- bladed propeller distorted out of the planar shape by a lone pair on the P	l Ø					

tormigen manyon 222 and 222 and and ihren zwei Grenzlinien hat. - Man kann aber auch, dafern das eine Paar paralleler Kanten AA' und BB' gegen das andere AB und A'B' hinreichend gross ist, A' mit B, und B' mit A zur Coincidenz bringen, indem man zuvor, das eine Ende AB des Streifens festhaltend, das andere Ende A'B' um die Längenaxe des Streifens halb herumdreht, als wodurch A'B' mit BA einer lei Richtung erhält. Die nach der letztgedachten Coincidenz entstandene Fläche hat nur Eine Grenzlinie, nämlich die aus den jetzt gebogenen und in A und B', sowie in B und A' an einander grenzenden Linien AA' und BB' zusammengesetzte. Auch hat diese Fläche nur Eine Seite; denn wenn man sie --um dieses noch auf andere Weise vorstellig zu machen - von einer beliebigen Stelle aus mit einer Farbe zu überstreichen anfängt und damit fortfährt, ohne mit dem Pinsel über die Grenzlinie hinaus auf die andere Seite überzugehen, so werden nichtsdestoweniger zuletzt an jeder Stelle die zwei daselbst einander gegenüberliegenden Seiten der Fläche gefärbt seyn.

August Ferdinand Möbius 1790-1866

Start

No C2's axes⊥ to Cn

 σ_h

Cnh

 $n \sigma_{v}$'s

Cnv

Step 1 Step 2

Step 3

Step 4

no **o**'s

¥

Cn

Cn axis (not simple consequence of S2n)

Step 5

 σ_h

Dnh

 $\begin{array}{l} Special \ Groups \\ (a) \ Linear? \ C_{\circ v}, \ D_{\circ \varphi h}? \\ (b) \ Multiple \ high-order \ axes? \\ T, \ T_h, \ T_d, \ O, \ O_h, \ I, \ I_h? \end{array}$

 $n C_2$'s axes \perp to C_n

n **o**a's

Dnd

Low Symmetry (no axes): C1, Cs, Ci

Only S_n (n even) axis: S_4 , S_6 , S_8 , ...,

no σ 's

¥

Dn

"Zur Theorie der Polyeder und der Elementarverwandschaft", diaria Mathematica, Mobius, A. F. 1858.

D ₃	E	2C ₃	3C ₂		
A ₁	1	1	1		$x^2 + y^2, z^2$
A ₂	1	1	-1	z, R _z	
Е	2	-1	0	$(x, y), (R_{x}, R_{y})$	$(x^2 - y^2, xy), (xz, yz)$

C _{2v}	E	C ₂	σ_{v} (xz)	$\sigma_{m v^{'}}$ (yz)
A_1	1	1	1	1
A_2	1	1	-1	-1
<i>B</i> ₁	1	-1	1	-1
B ₂	1	-1	-1	1

Oh	E	8C3	6C ₂	6C4	$3C_2(=C_4^2)$	i	6 <i>S</i> ₄	8 <i>5</i> 6	$3\sigma_{h}$	$6\sigma_{\mathbf{d}}$
A_{1g}	1	1	1	1	1	1	1	1	1	1
A_{2g}	1	1	-1	-1	1	1	-1	1	1	-1
E_g	2	-1	0	0	2	2	0	-1	2	0
T_{1g}	3	0	-1	1	-1	3	1	0	-1	-1
T _{2g}	3	0	1	-1	-1	3	-1	0	-1	1
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1
A _{2u}	1	1	-1	-1	1	-1	1	-1	-1	1
Eu	2	-1	0	0	2	-2	0	1	-2	0
T_{1u}	3	0	-1	1	-1	-3	-1	0	1	1
Tau	3	0	1	-1	-1	-3	1	0	1	-1

Ε 2**C**₃ $3\sigma_v$ C_{3v} A_1 1 1 1 A_2 $^{-1}$ 1 1 Ε 2 0 -1

Property of Group

- 1. Each group must contain an **identity** operation that commutes (in other words, EA = AE) with all other members of the group and leaves them unchanged (EA = AE = A).
- 2. Each operation must have an **inverse** that, when combined with the operation, yields the identity operation (sometimes a symmetry operation may be its own inverse). *Note:* By convention, we perform combined symmetry operations *from right to left* as written.

Properties of a Group

3. The product of any two group operations must also be a member of the group. This includes the product of any operation with itself.

C _{3v}	E	2C ₃	$3\sigma_{\mathbf{v}}$
A ₁	1	1	1
A_2	1	1	-1
Е	2	-1	0

4. The associative property of combination must hold. In other words, A(BC) = (AB)C.

Examples from Point Group

 $\sigma_{v}C_{3}$ has the same overall effect as σ_{v}'' , therefore we write $\sigma_{v}C_{3} = \sigma_{v}''$. It can be shown that the products of any two operations in C_{3v} are also members of C_{3v} .

$$C_3(\sigma_v \sigma_v') = (C_3 \sigma_v) \sigma_v$$

Matrix Representations of Symmetry Operations

Character Tables

		z y								
		$0 \rightarrow 0$	v	0		_0	< <	,0)	
	H	$\dot{H_1}$ \dot{H}_2		H ₂ H	[₁	$\dot{H_1}$	H ₂	$\dot{H_2}$	Ĥ	1
	Coord	dinate sys	tem	After C	2	After o	$\sigma_v(xz)$	After	$\sigma_{v}'(y)$	vz)
N	/latrix F	Representa	tions (Red	lucible)						
	<i>E</i> : [1 0 0 0	0 0 1 0 0 1	$C_2:\begin{bmatrix} -1\\ 0\\ 0 \end{bmatrix}$	0 0 -1 0 0 1	$\sigma_{v}(xz):\begin{bmatrix}1\\0\\0\end{bmatrix}$	0 -1 0	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \sigma_{v}'(y)$	z): $\begin{bmatrix} -1\\0\\0 \end{bmatrix}$	0 1 0	0 0 1
C	haracte	ers of Mat	rix Repres	entations						
		3		-1		1			1	
B	lock Di	agonalize	d Matrices							
	[1] 0 0	0 0 [1] 0 0 [1]]	[-1] 0 [· 0	0 0 -1] 0 0 [1]	[1] 0 0	00 [-1]0 0[1		$\begin{bmatrix} [-1] \\ 0 \\ 0 \end{bmatrix}$	0 [1] 0	0 0 [1]
h	rreducil	ble Repres	entations							
		E	C ₂	$\sigma_v(xz)$	$\sigma_v{'}(yz)$	Co	ordinate Us	ed		
		1	-1	1	-1		x			
		1	-1	-1	1		У			
		2	1	1	1		Z			
Fur	nctions	5	-1				$(= \mathbf{A}_1 + \mathbf{E}_1)$	B ₁ + B ₂)		

Charac	ter Table					
C _{2v}	E	C ₂	$\sigma_v(xz)$	$\sigma_{v}'(yz)$	Matchir	ng Functions
A_1	1	1	1	1	Ζ	x^2, y^2, z^2
A ₂	1	1	-1	-1	R_z	хy
B ₁	1	-1	1	-1	x, R _y	XZ
B ₂	1	-1	-1	1	y, R _x	уz

* The biggest possible values of χ is 3.

Character Tables

C _{2v}	E	C_2	$\sigma_v(xz)$	$\sigma'_v(yz)$	h =	= 4
A_1	1	1	1	1	z	x^2, y^2, z^2
A_2	1	- 1	-1	-1	R_z	xy
B_1	1	-1	1	-1	x, R_{y}	xz
B_2	1	-1	-1	1	y, R_x	y z

Pro	perty	Example: C _{2v}
1.	The total number of symmetry operations in the group is called the order (<i>h</i>). To determine the order of a group, simply total the number of symmetry operations listed in the top row of the character table.	Order = 4 four symmetry operations: E, C ₂ , $\sigma_v(xz)$, and $\sigma_v'(yz)$
2.	Symmetry operations are arranged in classes . All operations in a class have identical characters for their transformation matrices and are grouped in the same column in character tables.	Each symmetry operation is in a separate class; therefore, there are four columns in the character table.
3.	The number of irreducible representations equals the number of classes. This means that character tables have the same number of rows and columns (they are square).	Because there are four classes, there must also be four irreducible representations—and there are.

TABLE 4.7 Properties of Characters of Irreducible Representations in Point Groups

Great Orthogonality Theorem

 The sum of the squares of the dimensions (characters under *E*) of each of the irreducible representations equals the order of the group.

 $h = \sum_{i} [\chi_i(E)]^2$

 For any irreducible representation, the sum of the squares of the characters multiplied by the number of operations in the class (see Table 4.8 for an example), equals the order of the group.

$$h = \sum_{p} [\chi_i(\mathbf{R})]^2$$

 Irreducible representations are orthogonal to each other. The sum of the products of the characters, multiplied together for each class, for any pair of irreducible representations is 0.

$$\sum_{R} \chi_i(\boldsymbol{R}) \chi_j(\boldsymbol{R}) = 0, \text{ when } i \neq j$$

Taking any pair of irreducible representations, multiplying together the characters for each class, multiplying by the number of operations in the class (see Table 4.8 for an example), and adding the products gives zero.

 A totally symmetric representation, with characters of 1 for all operations, is included in all groups. $1^2 + 1^2 + 1^2 + 1^2 = 4 = h$, the order of the group.

For A_2 , $1^2 + 1^2 + (-1)^2 + (-1)^2 = 4 = h$. Each operation is its own class in this group.

 B_1 and B_2 are orthogonal:

(1)(1) + (-1)(-1) + (1)(-1) + (-1)(1) = 0E C₂ $\sigma_{v}(xz) = \sigma_{v}'(yz)$

Each operation is its own class in this group.

 C_{2v} has A_1 , in which all characters = 1.

1			Character Tables
$\begin{array}{c cccc} C_{2\nu} & E & C_2 \\ \hline \\ \hline \\ A_1 & 1 & 1 \\ \hline \\ A_1 & 1 & 1 \\ \hline \\ \end{array}$	$\frac{\sigma_v(xz) \sigma'_v(yz)}{1 1 z}$	x^2, y^2, z^2	Symmetry Labels
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} -1 & -1 & R_z \\ 1 & -1 & x, R_y \end{array}$	xy xz	1. Degeneracies Symmetry Labels
B_2 1 -1	-1 1 y, R_x	yz	1 A : symmetric about $C_n(\chi(C_n) = 1)$
C_{3v} E $2C_3$	$3\sigma_v$		B : antisymmetric about $C_n(\chi(C_n) = -1)$
A_1 1 1	1 z	$x^2 + y^2, z^2$	2 E
$A_2 \ 1 \ 1$	$-1 R_z$	$(y^2 - y^2 - yy)(yz - yz)$	3 T
	$0 (x, y)(K_x, K_y)$	$(x^2 - y^2, xy)(xz, yz)$	
$D_3 = E = 2C_3$	3C2		2. Subscript labels Meanings
A_1 1 1	1	$x^2 + y^2, z^2$	1 symmetric about $C_2(\perp C_n)$, $(\chi(C_2) = 1)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$-1 \mid z, R_z$ 0 $(x, y)(R \mid R)$	$(x^2 - y^2 - xy)(x_2 - y_2)$	2 antisymmetric about $C_2(\perp C_n)$, $(\chi(C_2) = -1)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3. Subscript labels (when no $C_2(\perp C_n)$ Meanings 1 symmetric about σ_v , $(\chi(\sigma_v) = 1)$ 2 antisymmetric about σ_v , $(\chi(\sigma_v) = -1)$ 4. Subscript labels Meanings g symmetric about <i>i</i> , $(\chi(i) = 1)$
$D_{5h} = 2C$	$C_5 = 2C_5^2 = 5C_2$	σ_h 2S ₅	² u antisymmetric about <i>i</i> , $(\chi(i) = -1)$
$\begin{array}{c ccccc} A_1' & 1 & 1 & 1 \\ A_2' & 1 & 1 \\ E_1' & 2 & 2 \cos \\ E_2' & 2 & 2 \cos \\ A_1'' & 1 & 1 \\ A_2'' & 1 & 1 \\ F_2'' & 2 & 2 \cos \\ A_1'' & 1 & 1 \\ A_2'' & 1 & 1 \\ A_1'' & 1 & 1 \\ A_2'' & 1 & 1 \\ A_1'' & 1 & 1 \\ A_2'' & 1 & 1 \\ A_1'' & 1 & 1 \\ A_2'' & 1 & 1 \\ A_1'' & 1 & 1 \\ A_2'' & 1 & 1 \\ A_1'' & 1 & 1 \\ A_2'' & 1 & 1 \\ A_1'' & 1 & 1 \\ A_1'' & 1 & 1 \\ A_1'' & 1 & 1 \\ A_1''' & 1 & 1 \\ A_1'''' & 1 & 1 \\ A_1''''' & 1 & 1 \\ A_1''''''''''''''''''''''''''''''''''''$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5. Superscript labels Meanings symmetric about σ_h , $(\chi(\sigma_h) = 1)$ " antisymmetric about σ_h , $(\chi(\sigma_h) = -1)$
$\begin{bmatrix} E_1 \\ E_2'' \end{bmatrix} \begin{bmatrix} 2 & 2 \cos \theta \\ 2 & 2 \cos \theta \end{bmatrix}$	144° 2 cos 72° 0	$-2 -2 \cos 12^{\circ} -2$ $-2 -2 \cos 144^{\circ} -2$	2 q 2 d os 7 z - o j

1 1

Polar molecule: a molecule with a permanent electric dipole moment.

A molecule with a center of inversion (*i*) cannot have a permanent dipole.

- A molecule cannot have a permanent dipole perpendicular to any mirror plane.
- A molecule cannot have a permanent dipole perpendicular to any axis of symmetry.
- Therefore, molecules having both a C_n axis and a perpendicular C_2 axis or σ_h cannot have a dipole in any direction. \Rightarrow Molecules belonging to any C_{nh} , D, T, O or I groups cannot have permanent dipole moment.

A **chiral molecule** is a molecule that is distinguished from its mirror image in the same way that left and right hands are distinguishable.

A molecule that has no axis of improper rotation (S_n) is chiral.

 S_n : including $S_1 = \sigma$ and $S_2 = i$

Molecular Spectroscopies

Molecular Vibrations

TABLE 4.10 Degrees of Freedom						
Number of Atoms	Total Degrees of Freedom	Translational Modes	Rotational Modes	Vibrational Modes		
N (linear)	ЗN	3	2	3N — 5		
3 (HCN)	9	3	2	4		
N (nonlinear)	ЗN	3	3	3N - 6		
3 (H ₂ O)	9	3	3	3		

© 2011 Pearson Education, Inc.

IR-active: when there is a change in dipole moment in a molecule as it vibrates

Raman-active: when there is a change in polarizability a molecule as it vibrates

Molecular Vibrations

TABLE 4.10 Degrees of Freedom							
Number of Atoms	Total Degrees of Freedom	Translational Modes	Rotational Modes	Vibrational Modes			
N (linear)	ЗN	3	2	3N - 5			
3 (HCN) 9		3 2		4			
N (nonlinear) 3N		3	3	3N - 6			
3 (H ₂ O)	9	3	3	3			

© 2011 Pearson Education, Inc.

(Little) Orthogonality Theorem $n_i = \frac{1}{h} \sum_{R} g(R) \chi_i(R) \chi_{\Gamma}(R)$

$$n_{A_{1}} = \frac{1}{4} [1 \cdot 1 \cdot 9 + 1 \cdot 1 \cdot (-1) + 1 \cdot 1 \cdot 3 + 1 \cdot 1 \cdot 1] = 3$$

$$n_{A_{2}} = \frac{1}{4} [1 \cdot 1 \cdot 9 + 1 \cdot 1 \cdot (-1) + 1 \cdot (-1) \cdot 3 + 1 \cdot (-1) \cdot 1] = 1$$

$$n_{B_{1}} = \frac{1}{4} [1 \cdot 1 \cdot 9 + 1 \cdot (-1) \cdot (-1) + 1 \cdot 1 \cdot 3 + 1 \cdot (-1) \cdot 1] = 3$$

$$n_{B_{2}} = \frac{1}{4} [1 \cdot 1 \cdot 9 + 1 \cdot (-1) \cdot (-1) + 1 \cdot (-1) \cdot 3 + 1 \cdot 1 \cdot 1] = 2$$

$$\Gamma = 3A_{1} + A_{2} + 3B_{1} + 2B_{2}$$

$$\Gamma_{trans} = A_1 + B_1 + B_2$$

$$\Gamma_{rot} = A_2 + B_1 + B_2$$

$$\Gamma_{vib} = 2A_1 + B_1$$

Molecular Vibrations

$$\Gamma_{vib} = 2A_1 + B_1$$

Molecular Vibrations

Molecular Vibrations

Selected Vibrational Modes

C_i		D _{4h}	$E 2C_4 C_2 2C_2' 2C_2'' (i) 2S_4 \sigma_h 2\sigma_v 2\sigma_d$
A_g A_u A_u	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c}A_{1g}\\A_{2g}\\B_{1g}\\B_{2g}\\E_{g}\\E_{g}\end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
C _{2h} Ag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A_{1u} A_{2u} B_{1u} B_{2u} E_u	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
B_g A_u B_u	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{D}{A_{c}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
D _{3d}	$E 2C_3 3C_2 i 2S_6 3\sigma_d$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} A_{1g} \\ A_{2g} \\ E_g \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B B B	$ \begin{vmatrix} z_{1u} \\ z_{2u} \\ z_{3u} \end{vmatrix} \begin{vmatrix} 1 & 1 & -1 & -1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1 & -$
A _{1u} A _{2u} E _u	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

Exclusion Rule : In a molecule with *i* symmetry element, IR-active and Raman -active vibrational modes are not coincident.