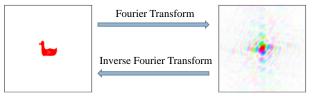
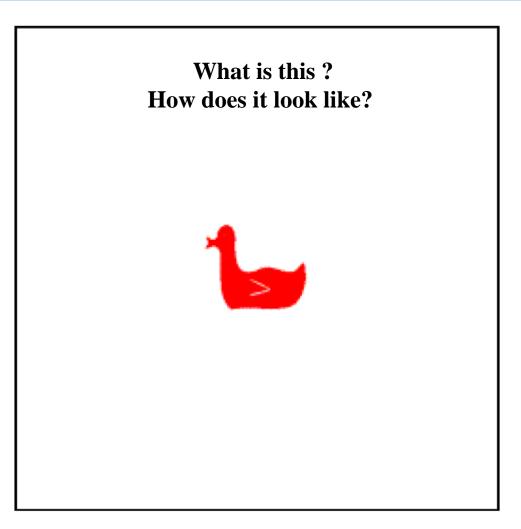

Nutshells of X-ray Crystallography

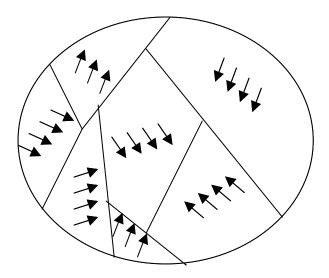

Line up! We will catch you !

2


What do we want to do?

Real World

(1/Real) World



Solid

<u>Gas, Liquid</u> No structure of ordering or stacking Structure in molecule or atom

Solid All solids in the universe have a certain number of ways of packing – **crystalline solid**

> 비정형 고체 (Amorphous solid) 결정형 고체 (Crystalline solid) 준결정 (Quasicrystal)

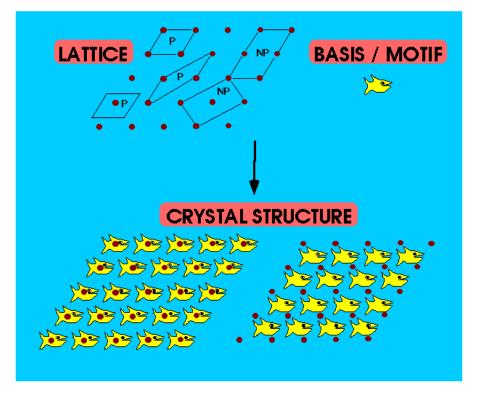
Solid Structure (Crystal Structure)

Unit Cell

CRYSTAL STRUCTURE

The periodic arrangement of atoms in the crystal.

LATTICE


An infinite array of points in space, in which each point has identical surroundings to all others.

(= Lattice points are all equivalent.)

UNIT CELL

A component of the crystal, which when stacked together with pure translational repetition reproduces the whole crystal.

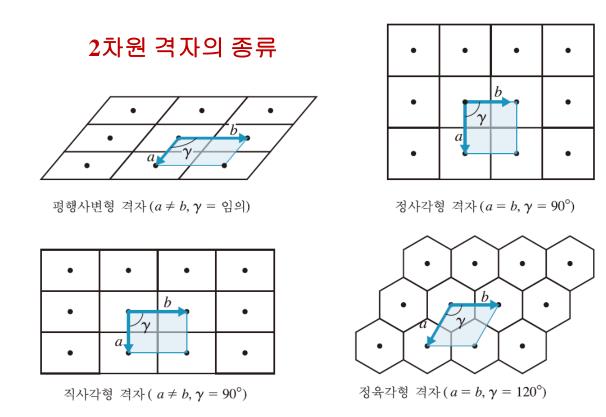
PRIMITIVE (P) UNIT CELLS contain only a *single lattice point*

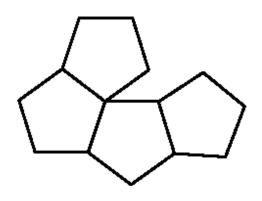
(a) (a) (b) (b) (a) (a) (b) (b)

Unit Cell

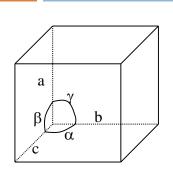
Unit cell?

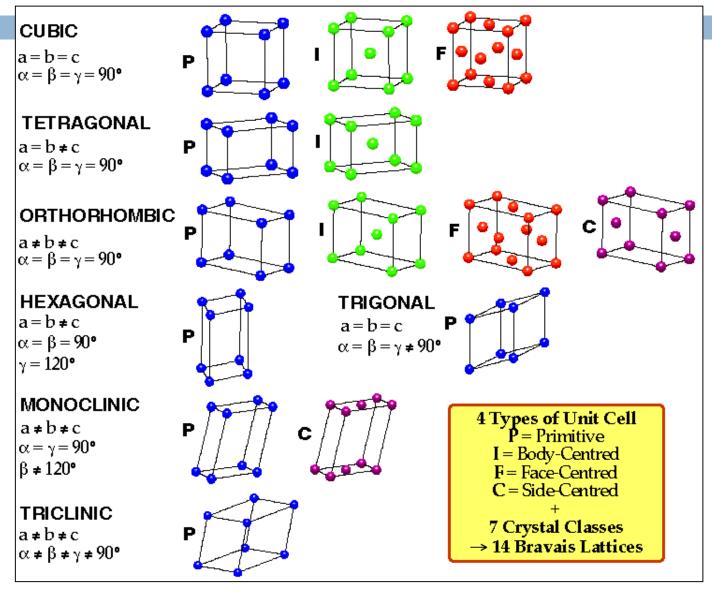
(a) (a) (b) (b) (a) (a) (b) (b)

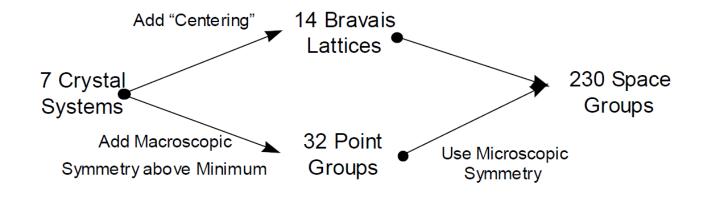

Unit Cell


Unit cell?

Requirement of Unit Cell (How to fill the space)

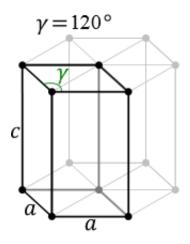

Crystallographic restriction theorem:


Must have 2-, or 3- fold axes => C_2 , C_3 , C_4 , C_6 axes (except for quasicrystal)



7 Crystal Systems (14 Bravais Lattices)

32 Point Groups, 230 Space groups



A point group is defined by the symmetry operations of

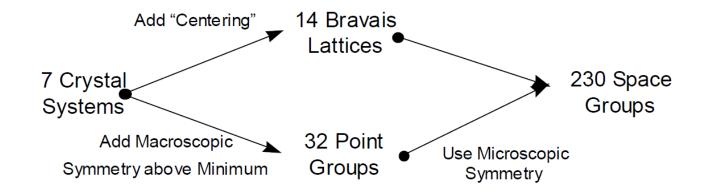
Symmetry Operations	Symmetry Elements
Rotation (C_n)	Rotational axis
Reflection (σ)	Mirror plane
Inversion (<i>i</i>)	Center of symmetry
Improper rotation (S_n)	Improper rotational axis

Theoretically, there are infinite number of point groups, but the crystallographic restriction theorem gives only **32 point groups** in the crystal systems.

Point group symmetry defines the symmetry of an isolated object or group of objects.

If **only lattice points** are considered, the point group of hexagonal lattice is D_{6h} .

Depending on the motif, it can have C_6 , C_{3h} , C_{6h} , D_6 , C_{6v} , D_{3h} .

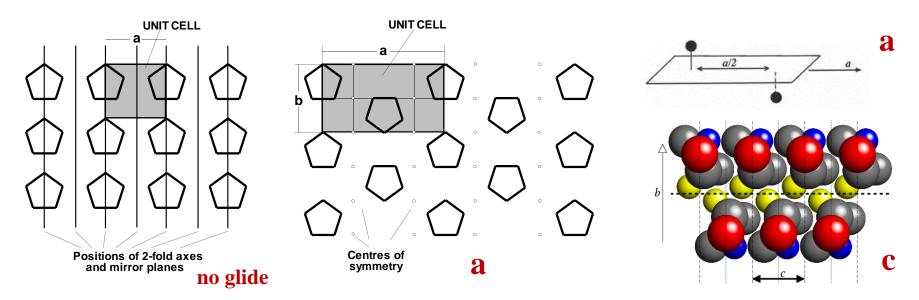

Hexagonal lattice

32 Point Groups

(n) means \overline{n}

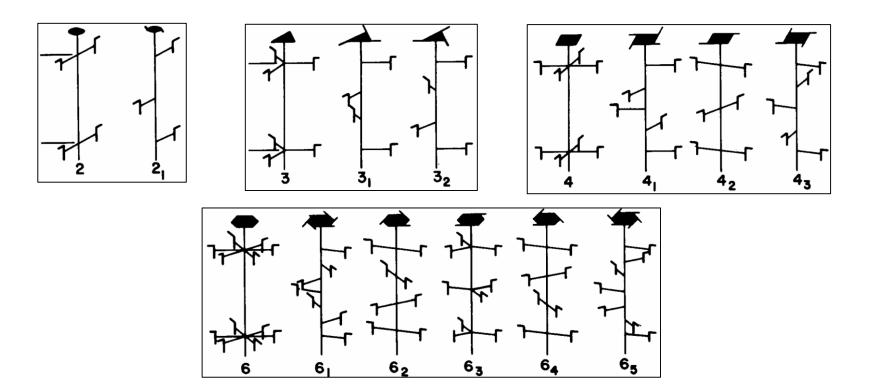
Crystal Systems	Hermann	-Mauguin	Shubnikov	Schoenflies	Orbifold	Coxeter	Order	
crystar systems	(full)	(short)	SHUDHIKOV	schoennies	Dibiloid	Coxeter		
Triclinic	1	1	1	C1	11	[]+	1	
meime	1	1	2	$C_i = S_2$	×	[2+,2+]	2	
	2	2	2	C ₂	22	[2]+	2	
Monoclinic	m	m	m	$C_s = C_{1h}$	*	[]	2	
	2 m	2/m	2:m	C _{2h}	2*	[2,2 ⁺]	4	
	222	222	2:2	$D_2 = V$	222	[2,2]+	4	
Orthorhombic	mm2	mm2	$2 \cdot m$	C _{2v}	*22	[2]	4	
	<u>222</u> mmmmm	mmm	$m \cdot 2 : m$	$D_{2h} = V_h$	*222	[2,2]	8	
	4	4	4	C4	44	[4] ⁺	4	
	4	4	$\tilde{4}$	S4	2×	[2 ⁺ ,4 ⁺]	4	
	<u>4</u> m	4/m	4:m	C _{4h}	4*	[2,4+]	8	
Tetragonal	422	422	4:2	D4	422	[4,2]+	8	
	4mm	4mm	$4 \cdot m$	C _{4v}	*44	[4]	8	
	@2m	@2m	$\tilde{4} \cdot m$	$D_{2d} = V_d$	2*2	[2+,4]	8	
	$\frac{4}{m}$ $\frac{2}{m}$ $\frac{2}{m}$	4/mmm	$m \cdot 4 : m$	D _{4h}	*422	[4,2]	16	
	3	3	3	C3	33	[3]+	3	
	3	3	õ	$S_6 = C_{3i}$	3x	[2 ⁺ ,6 ⁺]	6	
Trigonal	32	32	3:2	D ₃	322	[3,2]+	6	
	3m	3m	$3 \cdot m$	C _{3v}	*33	[3]	6	
	3 <u>2</u>	③m	$\tilde{6} \cdot m$	D 3d	2*3	[2+,6]	12	
	6	6	6	C ₆	66	[6]+	6	
	6	6	3:m	C _{3h}	3*	[2,3+]	6	
	$\frac{6}{m}$	6/m	6:m	C _{6h}	6*	[2,6+]	12	
Hexagonal	622	622	6:2	D ₆	622	[6,2]+	12	
	6mm	6mm	$6 \cdot m$	C _{6v}	*66	[6]	12	
	©m2	©m2	$m \cdot 3 : m$	D _{3h}	*322	[3,2]	12	
	$\frac{6}{m}$ $\frac{2}{m}$ $\frac{2}{m}$	6/mmm	$m \cdot 6 : m$	D _{6h}	*622	[6,2]	24	
	23	23	3/2	Т	332	[3,3]+	12	
	$\frac{2}{m}$ ③	m③	$\tilde{6}/2$	Τ _h	3*2	[3+,4]	24	
Cubic	432	432	3/4	0	432	[4,3] ⁺	24	
	@3m	@3m	$3/\tilde{4}$	T _d	*332	[3,3]	24	
	$\frac{4}{m}3m}{2}$	m③m	$\tilde{6}/4$	O _h	*432	[4,3]	48	

32 Point Groups, 230 Space groups

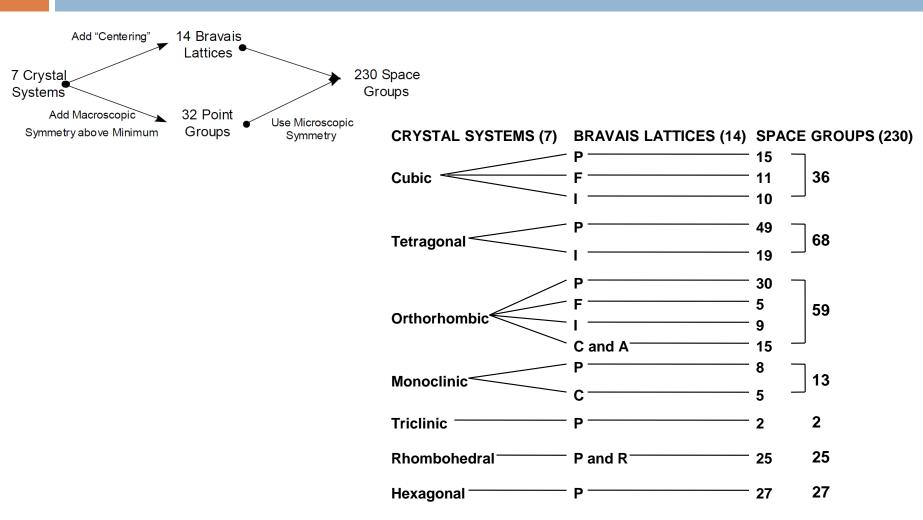

To generate an infinite 3D lattice from an object it is necessary to add translational symmetry to point group symmetry.

Symmetry Operations	Defined
Rotation (C_n) Reflection (σ) Inversion (i) Improper rotation (S_n)	Point group
+ Glide plane (= translation + reflection) Screw axis (= translation + rotation)	Space group

Glide plane is a symmetry operation describing how a reflection in a plane, followed by a translation (**less than a unit cell vector**) parallel with that plane, may leave the crystal unchanged.


- a: reflection followed by $\frac{1}{2}$ **a** translation
- b: reflection followed by $\frac{1}{2}$ b translation
- c: reflection followed by $\frac{1}{2}$ c translation

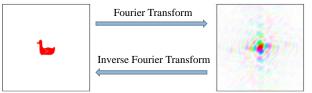
n : reflection followed by $\frac{1}{2}$ **a** + $\frac{1}{2}$ **b** or $\frac{1}{2}$ **a** + $\frac{1}{2}$ **c** or $\frac{1}{2}$ **b** + $\frac{1}{2}$ **c** translation (diagonal glide) d : reflection followed by $\frac{1}{4}$ **a** + $\frac{1}{4}$ **b** or $\frac{1}{4}$ **a** + $\frac{1}{4}$ **c** or $\frac{1}{4}$ **b** + $\frac{1}{4}$ **c** translation (diagonal glide)



Screw axis is a symmetry operation describing how a rotation about an axis, followed by a translation (**less than a unit cell vector**) parallel with that axis, may leave the crystal unchanged.

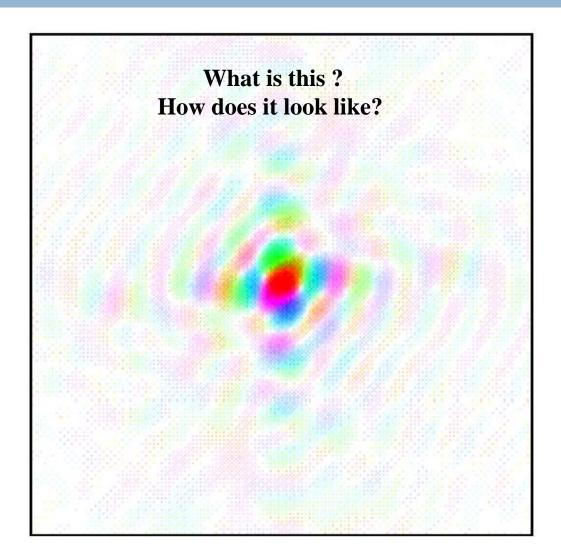
11 unique screw axes: $2_1, 3_1, 3_2, 4_1, 4_2, 4_3, 6_1, 6_2, 6_3, 6_4, 6_5$ (n_m: counter clockwise C_n + m/n translation)

Crystal systems, Bravais lattices Point Groups, Space groups

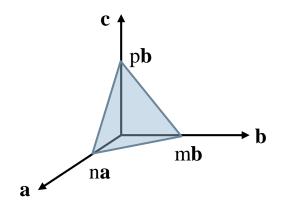


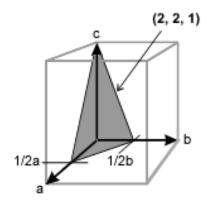
Crystal systems, Bravais lattices Point Groups, Space groups

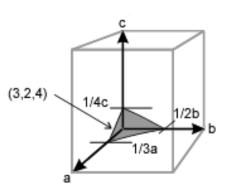
	Crystal system Point group					Space groups (international short symbol)		
#	(count) Bravais lattice	Inti	Schön,	Orbifold notation	Cox	Ord,		
1	Triclinic (2) α, β, γ ≠ 90°	1	C ₁	11	[]+	1	P1	
2	y a	Ţ	Ci	1×	[2+,2+]	2	PT	
3-5	Monoclinic	2	C2	22	[2]+	2	P2, P2 ₁ C2	
6-9	(13) $\beta \neq 90^{\circ} \beta \neq 90^{\circ}$ $\alpha, \gamma = 90^{\circ} \alpha, \gamma = 90^{\circ}$	m	Cs	*11	[]	- 2	Pm, Pc Cm, Cc	
10-15		2/m	C _{2h}	2*	[2,2*]		P2/m, P21/m C2/m, P2/c, P21/c C2/c	
16-24		222	D_2	222	[2,2]+	4	P222, P2221, P21212, P212121, C2221, C222, F222, I222, I212121	
25-46	Orthorhombic (59)	mm2	C _{2v}	*22	[2]	4	Pmm2, Pmc2 ₁ , Pcc2, Pma2, Pca2 ₁ , Pnc2, Pmn2 ₁ , Pba2, Pna2 ₁ , Pnn2 Cmm2, Cmc2 ₁ , Ccc2, Amm2, Aem2, Ama2, Aea2 Fmm2, Fdd2 Imm2, Iba2, Ima2	
47-74		mmm	D _{2h}	*222	[2,2]	8	Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma Cmcm, Cmce, Cmmm, Cccm, Cmme, Ccce Fmmm, Fddd Immm, Ibam, Ibca, Imma	
75-80		4	C ₄	44	[4]+	4	P4, P4 ₁ , P4 ₂ , P4 ₃ , I4, I4 ₁	
81-82		4	S4	2×	[2+,4+]	4	P4, I4	
83-88	Tetragonal (68)	4/m	C _{4h}	4*	[2,4*]	I X .	P4/m, P4 ₂ /m, P4/n, P4 ₂ /n 14/m, 14 ₁ /a	
89-98	c	422	D4	224	[2,4]*		P422, P42 ₁ 2, P4 ₁ 22, P4 ₁ 212, P4 ₂ 22, P4 ₂ 212, P4 ₃ 22, P4 ₃ 212 I422, I4 ₁ 22	
99-110		4mm	C _{4v}	*44	[4]	8	P4mm, P4bm, P4 ₂ cm, P4 ₂ nm, P4cc, P4nc, P4 ₂ mc, P4 ₂ bc I4mm, I4cm, I4 ₁ md, I4 ₁ cd	
111-122	a c	4 2m	D _{2d}	2*2	[2+,4]	8	P42m, P42c, P421m, P421c, P4m2, P4c2, P4b2, P4n2 I4m2, I4c2, I42m, I42d	
123-142		4/mmm	D _{4h}	*224	[2,4]	16	P4/mmm, P4/mcc, P4/nbm, P4/nnc, P4/mbm, P4/mnc, P4/nmm, P4/ncc, P4 ₂ /mmc, P4 ₂ /mcm, P4 ₂ /nbc, P4 ₂ /nnm, P4 ₂ /mbc, P4 ₂ /mmm, P4 ₂ /nmc, P4 ₂ /ncm I4/mmm, I4/mcm, I4 ₁ /amd, I4 ₁ /acd	

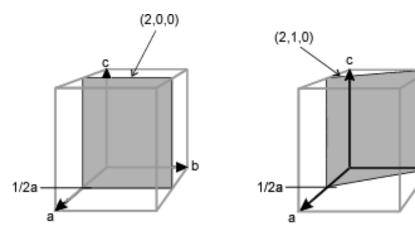

Crystal systems, Bravais lattices Point Groups, Space groups

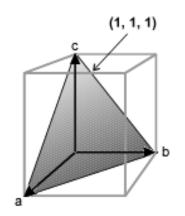
	Crystal system			Point group			Space groups (international short symbol)
#	(count) Bravais lattice	Inti	Schön,	Orbifold notation	Cox	Ord.	
143-146	riigonai	3	Сз	33	[3]+	3	P3, P3 ₁ , P3 ₂ R3
147-148	(25)	3	S ₆	3×	[2+,6+]	6	P3, R3
149-155		32	D3	223	[2,3]*	6	P312, P321, P3 ₁ 12, P3 ₁ 21, P3 ₂ 12, P3 ₂ 21 R32
156-161	y = 120*	Зm	C _{3v}	*33	[3]	6	P3m1, P31m, P3c1, P31c R3m, R3c
162-167	a	Зm	D _{3d}	2*3	[2*,6]	12	P31m, P31c, P3m1, P3c1 R3m, R3c
168-173		6	C ₆	66	[6]+	6	P6, P6 ₁ , P6 ₅ , P6 ₂ , P6 ₄ , P6 ₃
174	Hexagonal	6	С _{зһ}	3*	[2,3*]	6	Põ
175-176		6/m	C _{6h}	6*	[2,6*]	12	P6/m, P6 ₃ /m
177-182	γ = 120*	622	D ₆	226	[2,6]+	12	P622, P6 ₁ 22, P6 ₅ 22, P6 ₂ 22, P6 ₄ 22, P6 ₃ 22
183-186	·	6mm	C _{6v}	*66	[6]	12	P6mm, P6cc, P6gcm, P6gmc
187-190		ī6m2	D _{3h}	D _{3h} *223 [2,3] 12 P6m2		12	P6m2, P6c2, P62m, P62c
191-194		6/mmm	D _{6h}	*226	[2,6]	24	P6/mmm, P6/mcc, P6g/mcm, P6g/mmc
195-199		23	т	332	[3,3]+		P23, F23, I23 P2 ₁ 3, I2 ₁ 3
200-206	Cubic (36)	mЗ	Th	3*2	[3+,4]	24	Pm3, Pn3, Fm3, Fd3, Im3, Pa3, Ia3
207-214		432	0	432	[3,4]*	24	P432, P4 ₂ 32 F432, F4 ₁ 32 I432 P4 ₃ 32, P4 ₁ 32, I4 ₁ 32
215-220		43m	Td	*332	[3,3]	24	P43m, F43m, I43m P43n, F43c, I43d
221-230		m3m	O _h	*432	[3,4]	48	Pm3m, Pn3n, Pm3n, Pn3m Fm3m, Fm3c, Fd3m, Fd3c Im3m, Ia3d

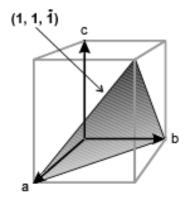



(1/Real) World




Miller Indices



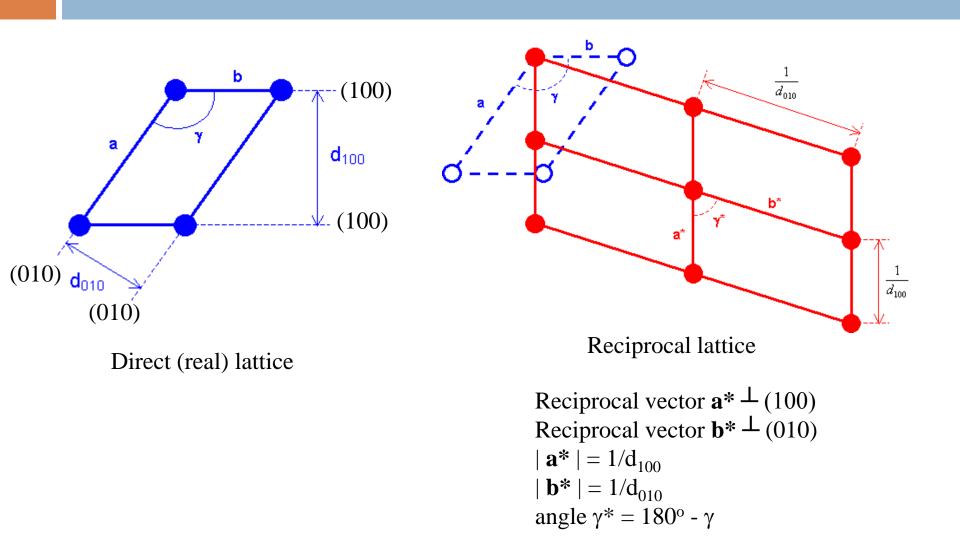

Miller index of the crystal plane: (1/n 1/m 1/p) => smallest integer (*h k l*)

incident reflected beam beam θ В Α 00 UNIT (1,0,0) а CELL m n θ θ D С У reflected incident beam beam Α Β X 00 d m n UNIT (2,0,0) — -E Ð ∕∙ CELL а У F Ρ d n С D Ζ

Constructive interference

 $2d\sin\theta = n\lambda$

$$2d\sin\theta = \lambda$$


1st order reflection

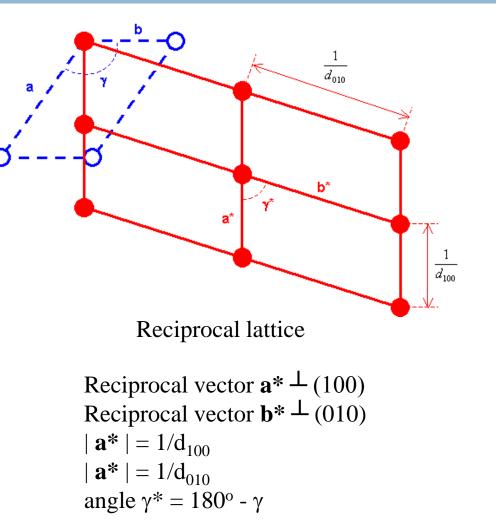
 $2d\sin\theta = 2\lambda$

2nd order reflection

Bragg's Law

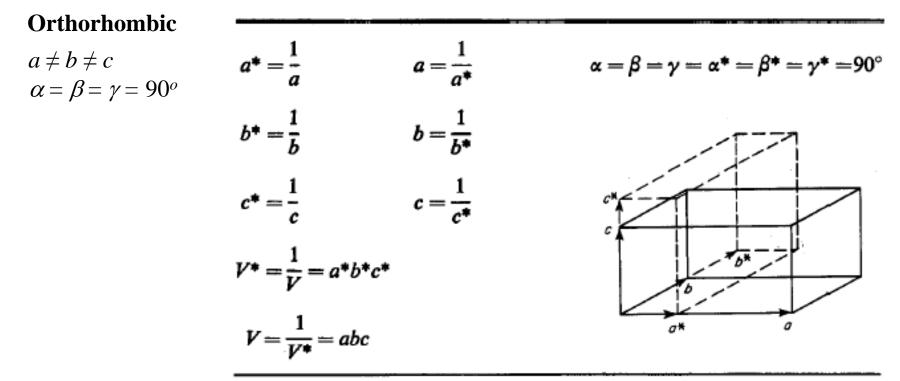
Reciprocal Lattice

Reciprocal Lattice


Due to the linear relationship between planes (ex, $d_{200} = (1/2)d_{100}$), a periodic lattice is generated. In general, the periodicity in the reciprocal lattice is given by

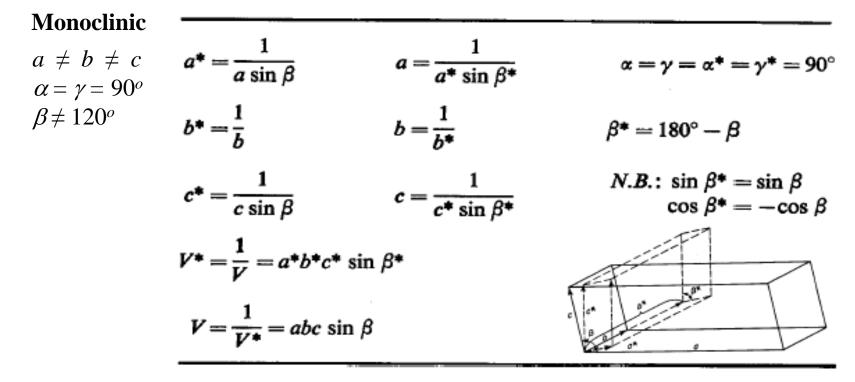
$$\rho *_{hkl} = 1/d_{hkl}$$

In vector form, the general reciprocal lattice vector for the (*hkl*) plane is given by


 $g_{hkl} = \mathbf{n}_{hkl}/d_{hkl}$

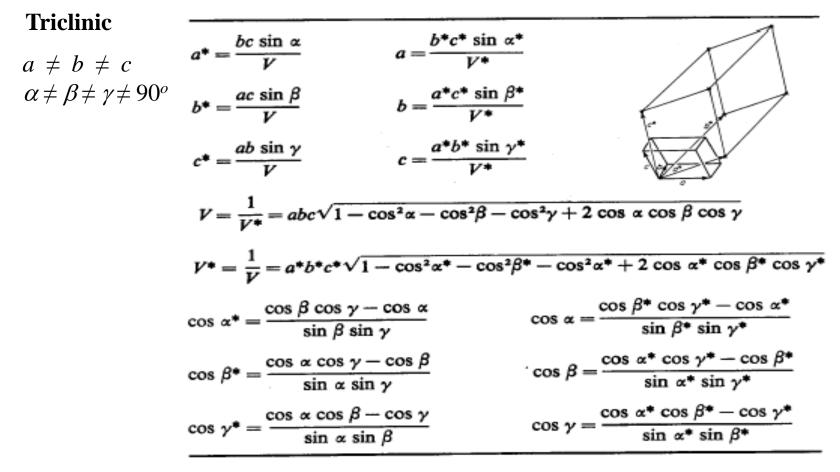
 \mathbf{n}_{hkl} : unit vector normal to the (*hkl*) planes.

Reciprocal Lattice


Direct and Reciprocal Cell Relationships

Cubic a = b = c, $\alpha = \beta = \gamma = \alpha * = \beta * = \gamma * = 90^{\circ}$ **Tetragonal** $a = b \neq c$, $\alpha = \beta = \gamma = \alpha * = \beta * = \gamma * = 90^{\circ}$

Reciprocal Lattice


Direct and Reciprocal Cell Relationships

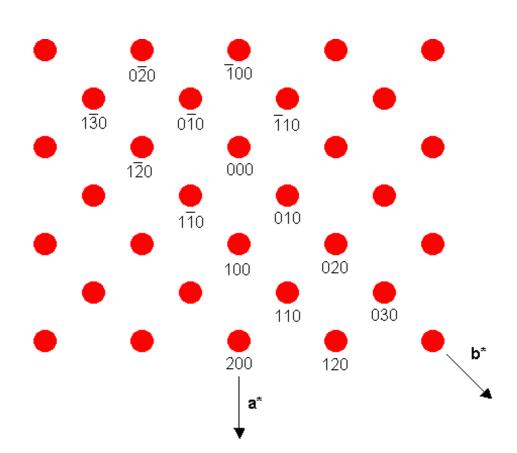
Hexagonal $a = b \neq c$, $\alpha = \beta = \alpha * = \beta * = 90^{\circ}$, $\gamma = 120^{\circ}$, $\gamma * = 60^{\circ}$,

Reciprocal Lattice

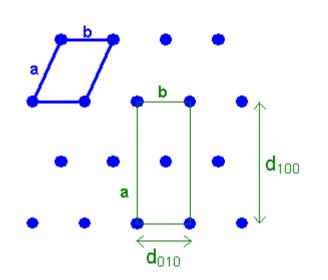
Direct and Reciprocal Cell Relationships

Trigonal a = b = c, $\alpha = \beta = \gamma \neq 90^{\circ}$

Reciprocal Lattice

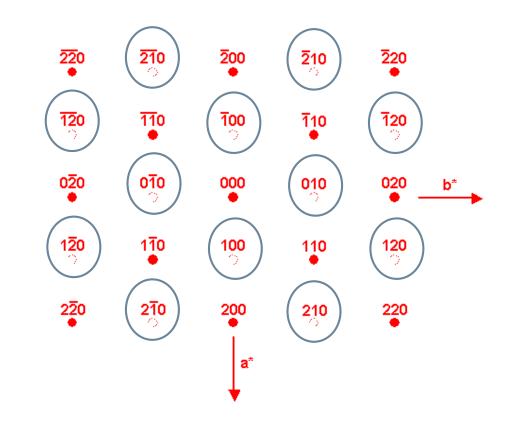

Due to the linear relationship between planes (ex, $d_{200} = (1/2)d_{100}$), a periodic lattice is generated. In general, the periodicity in the reciprocal lattice is given by

$$\rho *_{hkl} = 1/d_{hkl}$$


In vector form, the general reciprocal lattice vector for the (*hkl*) plane is given by

$$g_{hkl} = \mathbf{n}_{hkl} / d_{hkl}$$

 \mathbf{n}_{hkl} : unit vector normal to the (*hkl*) planes.

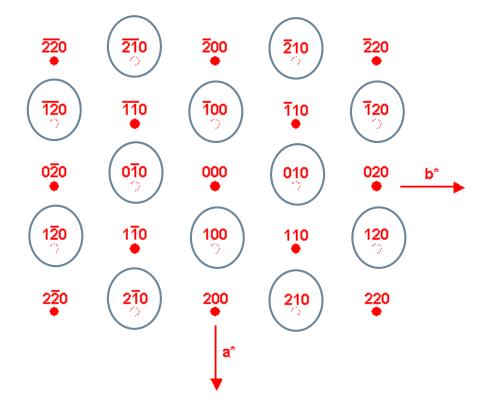

Reciprocal Lattice

Absence in reciprocal lattice

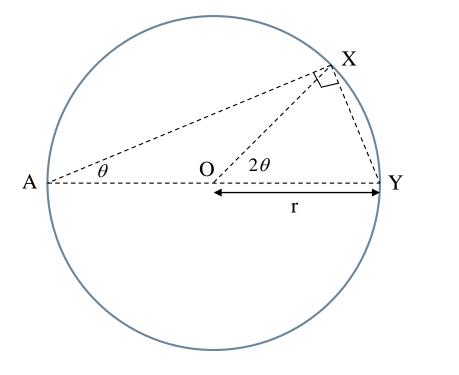
High symmetry can lead to reflections being systematically absent from the data set.

For non-primitive lattices, such as a Ccentred lattice, systematic absences can occur in the reciprocal lattice (and in diffraction pattern) due to the construction of the lattices.

Reciprocal Lattice


Absence in reciprocal lattice

General absences determine the lattice type; Primitive (**P**) has no general absences. End Centered (**C**) h+k=2n+1 are all absent. Face Centered (**F**) only h, k, l, all even or all odd are observed.


Body Cantered (I) h+k+l=2n+1 are all absent.

Special absences refer to specific sets of reflections and are used to detect the presence of glide planes and screw axes.

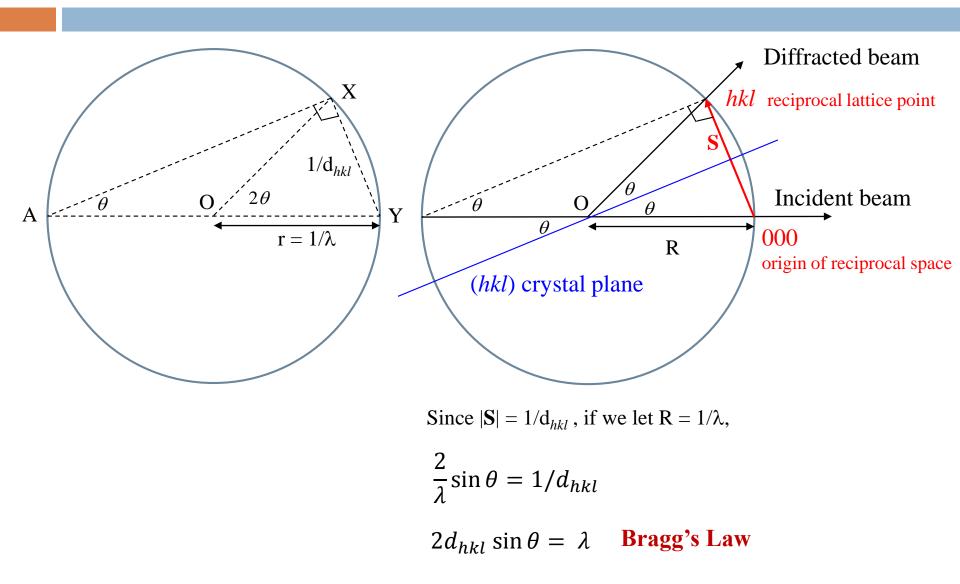
Give information for determining space groups

Ewald Sphere

If this geometry is constructed **in reciprocal space** with

 $r = 1/\lambda$ Y is 000 point X is a general *hkl* point

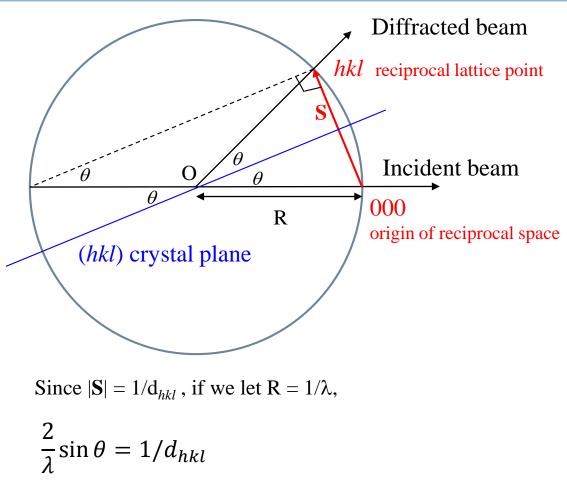
 $=> XY = 1/d_{hkl}$


 $\frac{2}{\lambda}\sin\theta = 1/d_{hkl}$ $2d_{hkl}\sin\theta = \lambda \quad \text{Bragg's Law}$

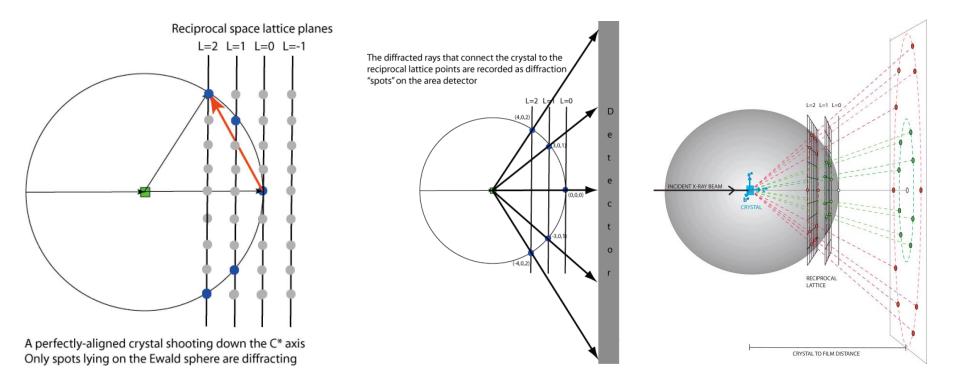
 $2r\sin\theta = XY$

In 3D, it's a sphere, called **Ewald Sphere**.

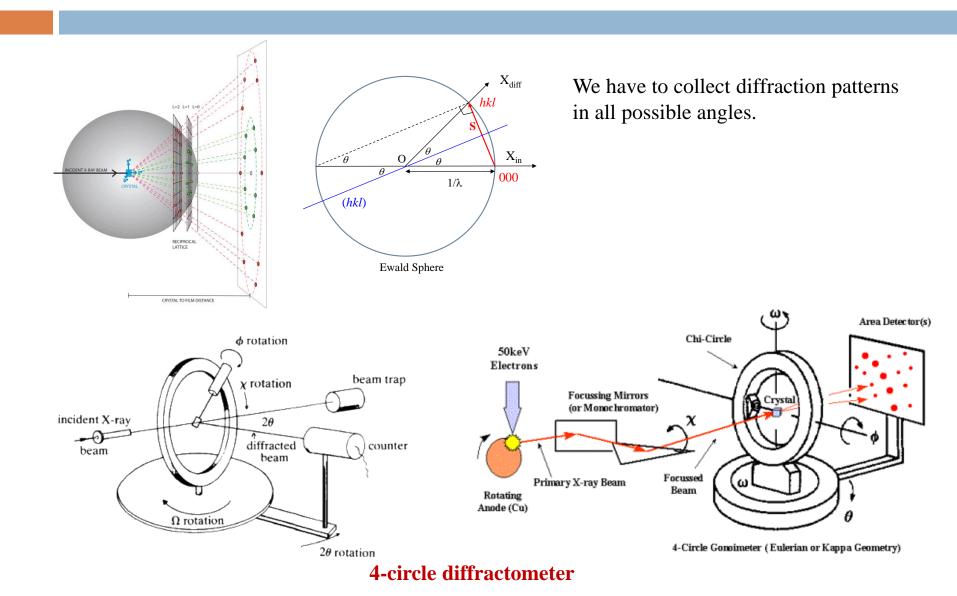
Even though the Ewald sphere is in reciprocal space (inverse distance) and we are in real space, we can use the predicted angles of diffraction (2θ) to predict the diffraction pattern.


Ewald Sphere

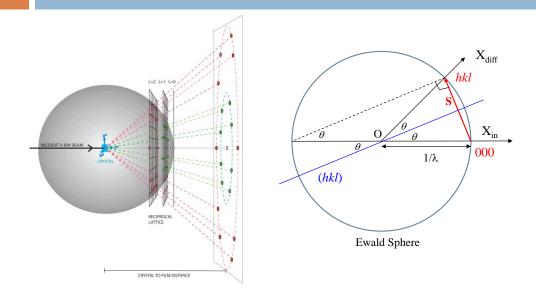
Ewald Sphere


Even though the Ewald sphere is in reciprocal space (inverse distance) and we are in real space, we can use the predicted angles of diffraction (2θ) to predict the diffraction pattern.

→ Diffraction occurs when a reciprocal lattice point intersects Ewald sphere.

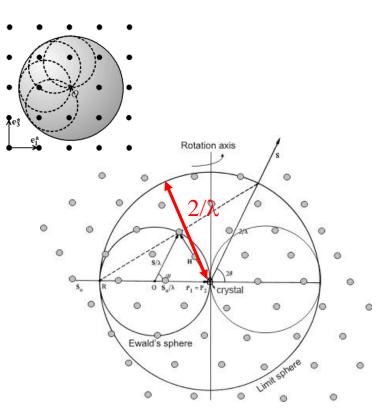

 $2d_{hkl}\sin\theta = \lambda$ **Bragg's Law**

Ewald Sphere



Examples

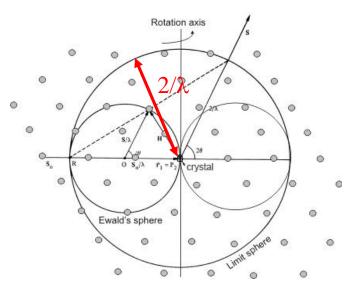
Limiting Sphere



Limiting Sphere

If one rotates the Ewald sphere completely about the (000) reciprocal lattice point in all three dimensions, the larger sphere (of radius $2/\lambda$) contains all of the reflections that it is possible to collect using that wavelength of X-rays. This construction is known as the "Limiting sphere" and it defines the complete data set. Any reciprocal lattice points outside of this sphere can not be observed.

We have to collect diffraction patterns in all possible angles. Then **how many diffraction spots can we get theoretically**?

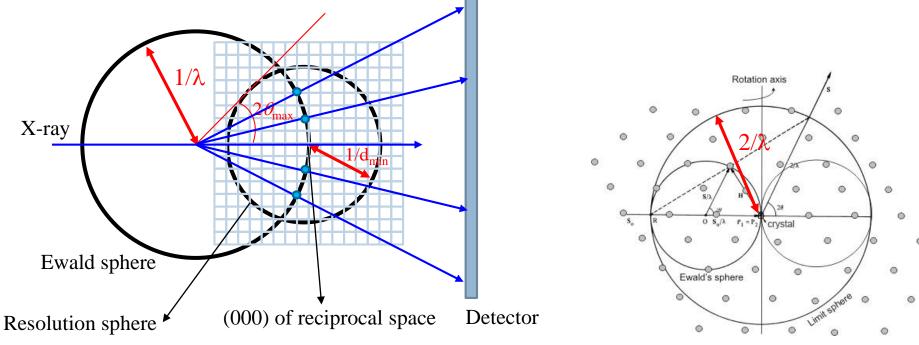

Complete Data Set: total # of reciprocal lattice points within the limiting sphere

= theoretically possible total # of reflection points

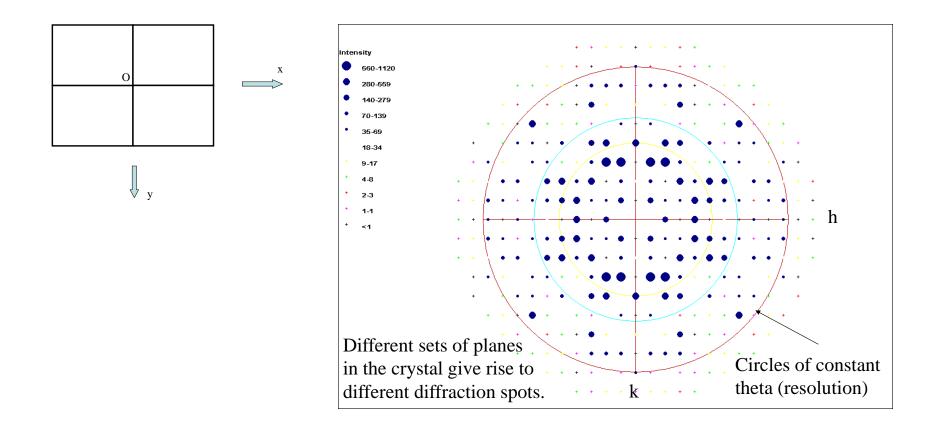
$$\approx \frac{\frac{4}{3}\pi r^{3}}{V^{*}} = \frac{4}{3}\pi (2/\lambda)^{3}V \approx 33.5 \ V/\lambda^{3} = 33.5/V^{*}\lambda^{3}$$

(V*: volume of reciprocal unit cell

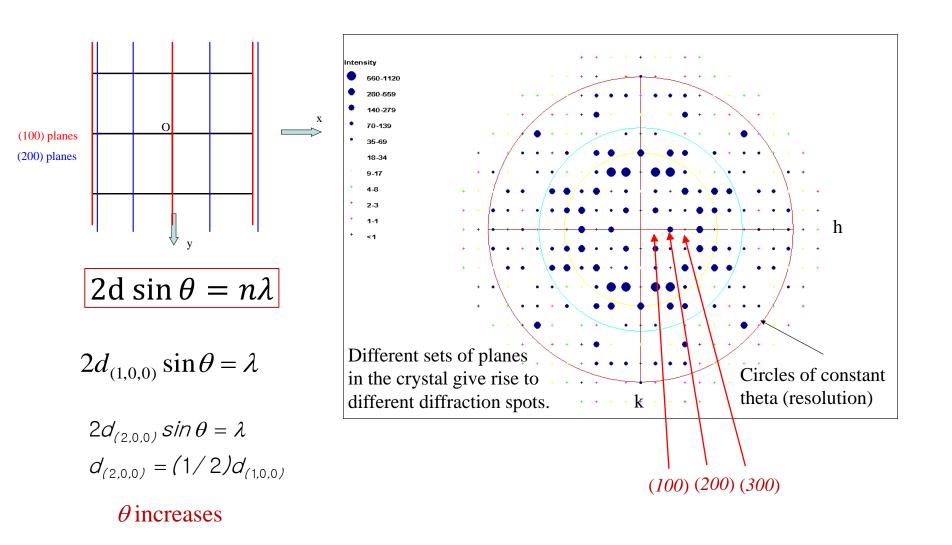
V: volume of unit cell. $\lambda = X$ -ray wavelength



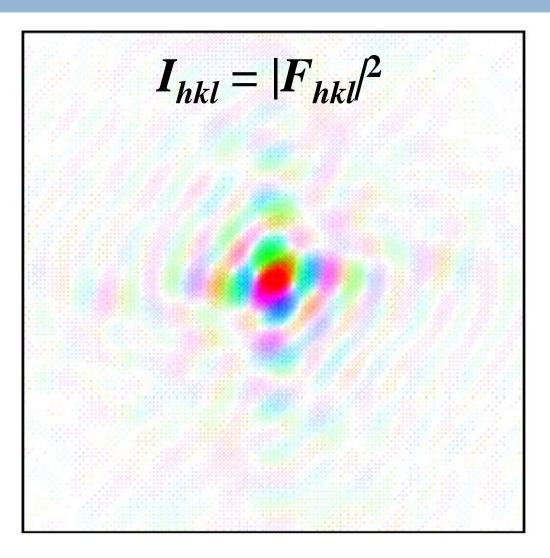
Resolution:

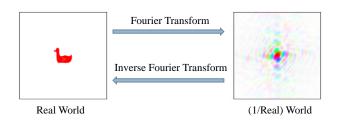

Theoretical maximum resolution: when $\sin \theta = 1$, $\mathbf{d}_{res} = \lambda/2$ Real maximum resolution: $\mathbf{d}_{res} = (\lambda/2) \sin \theta_{max}$

$$2d \sin \theta = \lambda$$
$$\sin \theta_{max} = \lambda/2d_{min}$$

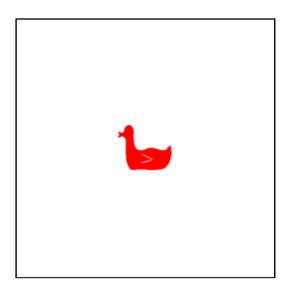

By reducing the wavelength, Bragg's Law indicates that the diffraction angles (θ) will decrease; the spectrum shrinks, but on the other hand, more diffraction data will be obtained, and therefore a better structural resolution will be achieved.

Examples

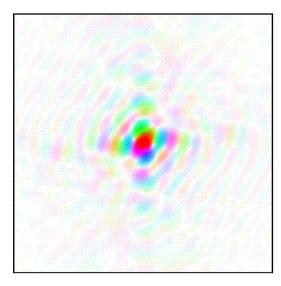

Examples



(120) planes Intensity 560-1120 Х 280-559 0 140-279 70-139 35-69 18-34 9-17 4-8 2-3 \checkmark у 1-1 h + <1 $2d\sin\theta = n\lambda$ Different sets of planes Circles of constant in the crystal give rise to theta (resolution) different diffraction spots. ľ₹ (120)(240)(360

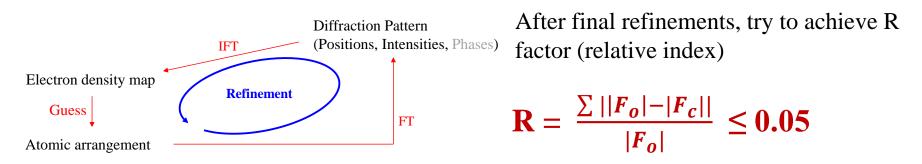

Examples

Basic Principle of Diffraction Pattern Outcomes of Experiment



How to get this ?

From this ?



To get ρ_{xyz} , we have to know the **structure factor**, \mathbf{F}_{hkl} . \mathbf{F}_{hkl} contains amplitude ($|\mathbf{F}_{hkl}|$) and phase (ϕ_{hkl}) at *hkl*.

- What we measure in the experiment, $|F_{hkl}|$
- What we still need, φ_{hkl} (the phase problem)

Methods for solving the phase problem (Initial Phasing)

- Ab initio phasing (Direct methods)
- Molecular Replacement (MR)
- Multiple/Single Isomorphous replacement (MIR/SIR) (=Heavy Metal Method)
- Multiple/Single wavelength Anomalous Diffraction (MAD/SAD)

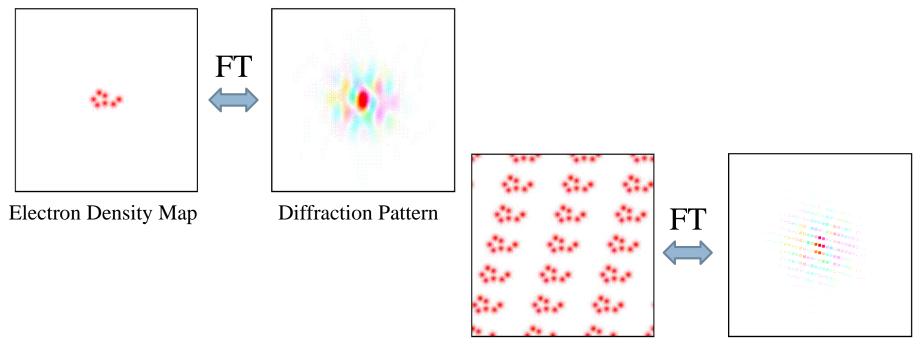
 $\mathbf{F}_{hkl} = |\mathbf{F}_{hkl}| \cos \phi_{hkl} + i |\mathbf{F}_{hkl}| \sin \phi_{hkl}$

$$F_{(h,k,l)} = \sum_{j=1}^{atoms} f_{(j)} \exp\left[2\pi \cdot i(hx_{(j)} + ky_{(j)} + lz_{(j)})\right]$$

j = j-th atom

- Describes how atomic arrangement (*xyz*) influences the intensity of the scattered beam.
- It tells us which reflections (i.e., peaks, *hkl*) to expect in a diffraction pattern.
- Structure factor is independent of the shape and size of the unit cell.

$$|F_{hkl}| = \frac{\text{amplitude of the wave scattered by all atoms of in a unit cell}}{\text{amplitude of the wave scattered by one electron}}$$

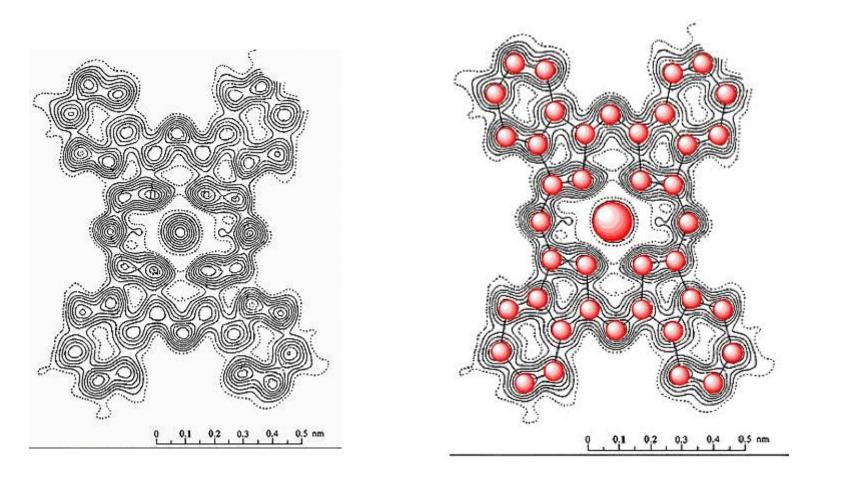

By definition, $|F_{000}|$ is the sum of all electrons in a unit cell.

Selection Rules

Crystal Type	Bravais Lattice	Reflections Present	Reflections Absent
Simple	Primitive, P	Any h,k,l	None
Body-centered	Body centered, I	h+k+l = even	h+k+l = odd
Face-centered	Face-centered, F	h,k,l unmixed	h,k,l mixed
NaCl	FCC	h,k,l unmixed	h,k,l mixed
Zincblende	FCC	Same as FCC, but if all even and $h+k+l\neq 4N$ then absent	h,k,l mixed and if all even and $h+k+l\neq 4N$ then absent
Base-centered	Base-centered	h,k both even or both odd	h,k mixed
Hexagonal close-packed	Hexagonal	h+2k=3N with l even $h+2k=3N\pm 1$ with l odd $h+2k=3N\pm 1$ with l even	h+2k=3N with l odd

Fourier Transform (Inverse Fourier Transform)

$$\rho(xyz) = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} |F_{hkl}| \exp[-2\pi \cdot i(hx + ky + lz) + i\varphi_{hkl}]$$



Electron Density Map

Diffraction Pattern

Electron Density Map to Structure

Initial Guess

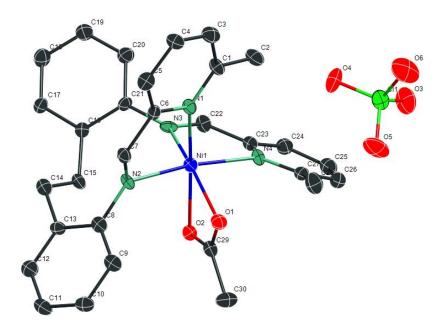
Electron Density Map

Atomic Arrangement (Structure)

Refinements

- 1. Use whatever atoms you have that look OK to generate an electron density map.
- 2. The known atoms are subtracted from this to generate a difference map.
- 3. Any atoms that have been missed should be in the difference map.
- 4. The refinement process minimises the difference between observed (F_o) and calculated (F_c) reflection intensities.
- 5. In the final difference map there should be no peaks larger than a H atom *i.e.* > $1e/Å^3$. (A H atom has a volume of about $1Å^3$ and has 1 e.)

Refinements


Addition of hydrogen atoms – Hydrogen atoms have only 1 electron and are often not seen in difference maps. It is best to include them at calculated positions. This is easy to do and it will improve the "R factor".

Anisotropic refinement of the non-hydrogen atoms – In the early stages atoms are refined as if they were spheres. Since atoms vibrate in a way that is controlled by chemical bonds and interactions with their neighbours, it is better to refine then as ellipsoids. One parameter (the radius) is enough to define a sphere this with x,y,z means that isotropic refinement requires 4 parameters per atom. An ellipsoid needs 6 parameters thus an anisotropic atom requires 9 parameters.

Report

Details of the crystallization - solvent, temperature, how did you obtain the crystal
Details of the data collection - instrument, number of reflections, crystal size
Details of the solution/refinement - confidence factors, hydrogen treatment
Details of the structure - atom positions, thermal parameters, bond distances and angles
A figure showing the atom numeration
A figure showing the thermal ellipsoid (ORTEP) (could be combined)

Files from Crystallographers

.raw – raw reflection data; used as input file for XPREP

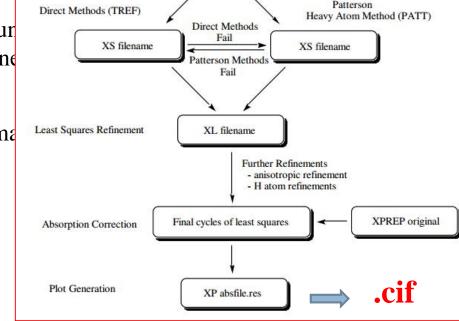
- ._ls statistical analysis of raw reflection data
- .prp a listing of what was done while running XPREP
- .p4p data collection parameter file; used as input file for XPREP
- **.hkl** reflection intensity table created by XPREP.
- .ins instruction file containing cell parameters, etc. created by XPREP; input file for XS, XL, and XSHELL
- .res results file created by running XS or XL; updated form of .ins file
- .lst a listing of what was done in the last computer run.

.fcf – structure factors

.cif – crystallographic information file

Files from Crystallographers

.raw – raw reflection data; used as input file for XPREP


- ._ls statistical analysis of raw reflection data
- .prp a listing of what was done while running XPREP
- .p4p data collection parameter file; used as input file for XPREP
- **.hkl** reflection intensity table created by XPREP.
- .ins instruction file containing cell parameters, etc. created by XPREP; input file for XS, XL, and XSHELL
- .res results file created by running XS or XL; updated form of .ins file
- .lst a listing of what was done in the last computer run.

.fcf – structure factors

.cif – crystallographic information file

Files from Crystallographers

.raw – raw reflection data; used
.ls – statistical analysis of raw
.prp – a listing of what was don
.p4p – data collection paramete
.hkl – reflection intensity table
.ins – instruction file containing XL, and XSHELL
.res – results file created by rur
.lst – a listing of what was done
.fcf – structure factors
.cif – crystallographic informa

X-ray detector

original.raw, original.p4p, original._ls

XPREP original

filename.ins and filename.hkl

file for XS.

Data Collection

Space Group Determination

.hkl File

.hkl – reflection intensity

k l						
ndices						
0	0	-10	36.58	1.83.	n	
0	0	10	36.25	2.34.	n	
0	0	-9	123.48	3.48.	n	
0	0	9	141.26	6.23.	n	sometimes
0	0	8	251.32	11.96.	n	Batch numbe
0	0	-7	1132.81	37.85₊	n	
0	0	6	64.41	3.14.	n	
0	0	-5	295.17	12.09.	n	
0	0	4	23.58	1.06.		
0	0	-3	222.51	8.41.		
0	0	3	184.29	7.70⊷	n	
a 0	0	1	26.52	1.32.	n	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 3 184.29 0 0 -3 222.51 0 0 4 23.58 0 0 -5 295.17 0 0 -5 295.17 0 0 6 64.41 0 0 -7 1132.81 0 0 8 251.32 0 0 9 141.26 0 0 -9 123.48 0 0 10 36.25 0 0 -10 36.58	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 3 184.29 7.70_{+} n 0 0 -3 222.51 8.41_{+} n 0 0 4 23.58 1.06_{+} n 0 0 -5 295.17 12.09_{+} n 0 0 -5 295.17 12.09_{+} n 0 0 -6 64.41 3.14_{+} n 0 0 -7 1132.81 37.85_{+} n 0 0 -7 1132.81 37.85_{+} n 0 0 -7 1132.81 37.85_{+} n 0 0 9 141.26 6.23_{+} n 0 0 -9 123.48 3.48_{+} n 0 0 10 36.25 2.34_{+} n 0 0 -10 36.58 1.83_{+} n

numbers (0, 1...) etimes missing

.fcf File	# # h,k,l, Fc-squared, Fo-squared, sigma(Fo-squared) and status flag # data_new _shelx_title ' ZnBC-DT in Pbna' _shelx_refln_list_code 4 _shelx_F_calc_maximum 86.03 _exptl_crystal_F_000 616.00 _reflns_d_resolution_high 0.8902
.fcf – structure factors	loop_
	_cell_length_a 7.7950 _cell_length_b 9.8090 _cell_length_c 15.4210 _cell_angle_alpha 90.000 _cell_angle_beta 90.000 _cell_angle_gamma 90.000
Miller indic	shelx_F_squared_multiplier 1.000 loop_ refIn_index_h refIn_index_k refIn_F_squared_calc refIn_F_squared_meas refIn_F_squared_sigma refIn_observed_status 2 0 0 746.13 668.00 11.111 0 4 0 0 4605.89 4926.42 77.02 0 4 0 0 4605.89 4926.42 77.02 0 6 0 0 2432.20 2797.27 44.05 0 8 0 0 19.47 21.95 2.170 0 4 1 0 3584.50 3326.54 36.70 0 6 1 0 653.33 755.05 9.65 0 8 1 0 6.15 9.79 1.00 0 2 2 0 191.20 173.97 2.44 0 6 S
h k l	F_c^2 F_o^2 $\sigma(F_o^2)$ factors

http://www.iucr.org/__data/ iucr/cifdic_html/1/cif_core. dic/index.html

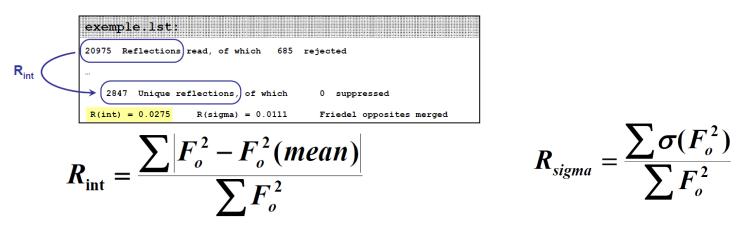

Table A. Crystal data and structureCH3OH	refinement for [Cu ₄ L ₄]•4	Cif file line
Empirical formula	$C_{116}H_{104}Cu_4N_4O_{12}$	_chemical_formula_sum
Formula weight	2056.23	_chemical_formula_weight
Temperature, K	100	_cell_measurement_temperature
Wavelength, Å	0.71073	_diffrn_radiation_wavelength
Crystal system	Monoclinic	_symmetry_cell_setting
Space group	$P2_1/n$	_symmetry_space_group_name_H-M
a, Å	15.0138(10)	_cell_length_a
b, Å	23.9417(16)	_cell_length_b
c, Å	28.5907(19)	_cell_length_c
α, °	90	_cell_angle_alpha
β, °	104.426(2)	_cell_angle_beta
γ, °	90	_cell_angle_gamma
Volume, Å ³	9953.1(11)	_cell_volume
Ζ	4	_cell_formula_units_Z
D _{cacl} , (g cm ⁻³)	1.372	_exptl_crystal_density_diffrn
μ, mm ⁻¹	0.911	_exptl_absorpt_coefficient_mu
F(0 0 0)	4272	_exptl_crystal_F_000
Crystal Size, mm ³	0.50 x 0.03 x 0.02	_exptl_crystal_size_max, mid, min
Reflection collected	161621	_diffrn_reflns_number
Independent Reflections	24480 ($R_{int} = 0.1466$)	_reflns_number_total (R _{int} = _diffrn_reflns_a v_R_equivalents)
Completeness to θ	% (=°)	_diffrn_measured_fraction_theta_full (_diffr n_reflns_theta_full)
Max. and min. transmission	0.9820 and 0.6582	_exptl_absorpt_correction_T_max and _exptl _absorpt_correction_T_min
No. of data	24480	_refine_ls_number_reflns
No. of restraints	0	_refine_ls_number_restraints
No. of parameters	1261	_refine_ls_number_parameters
Absorption correction	Mutiscan	_exptl_absorpt_correction_type
Goodness-of-fit on F ²	1.021	_refine_ls_goodness_of_fit_ref
Final R indices $[I > 2\sigma(I)]^{a,b}$	R1 = 0.0672, wR2 = 0.14 78	R1 = _refine_ls_R_factor_gt, wR2 = _refine_ls_wR_factor_gt
R indices (all data)	R1 = 0.1633, wR2 = 0.18 84	R1 = _refine_ls_R_factor_all, wR2 = _refine_ls_wR_factor_ref
Absolute structure parameters		_refine_ls_abs_structure_Flack
Largest diff. peak and hole, $e \cdot \mathring{A}^{-3}$	1.321 and -0.920	_refine_diff_density_max and _refine_diff_d ensity_min

Table A. Crystal data and structure refinement for $[Cu_4 L_4]$ •4CH₃OH

Empirical formula	$C_{116}H_{104}Cu_4N_4O_{12}$
Formula weight	2056.23
Temperature, K	100
Wavelength, Å	0.71073
Crystal system	Monoclinic
Space group	$P2_1/n$
a, Å	15.0138(10)
b, Å	23.9417(16)
c, Å	28.5907(19)
α, °	90
β, ^o	104.426(2)
γ, ^o	90
Volume, Å ³	9953.1(11)
Ζ	4
D _{cacl} , (g cm ⁻³)	1.372

		F(000
F(0 0 0)	4272	electi
Crystal Size, mm ³	0.50 x 0.03 x 0.02	(effec
Reflection collected	161621	electr
Independent Reflections	24480 ($R_{int} = 0.1466$)	

F(000) = sum of all electrons in the unit cell (effective number of electrons in the unit cell)

 R_{int} = Merging error (measure of the precision/reproducibility) Values = 0 ~ infinity R_{σ} = Measure of the signal-to-noise ratio

The less R_{int} , the better. [If $R_{int} >> R_{\sigma}$ (more than 2-3 times), problem !!]

Completeness to θ	0% (=0)
Max. and min. transmission	0.9820 and 0.6582
No. of data	24480

Fraction of unique (symmetry-independent) reflections measured out to <u>_diffrn_reflns_theta_full</u>. Values = 0 ~ 100 %

The theta angle (in degrees) at which the measured reflection count is close to complete. The fraction of unique reflections measured out to this angle is given by _diffrn_measured_ fraction_ theta_full. Values = $0 \sim 90$

The maximum and minimum transmission factors applied to the diffraction pattern measured in this experiment. These factors are also referred to as the absorption correction A or $1/A^*$. As this value is the one that is applied to the measured intensities, it includes the correction for absorption by the specimen mount and diffractometer as well as by the specimen itself. Values = $0 \sim 1$

The number of unique reflections contributing to the least-squares refinement calculation. Values = $0 \sim infinity$

No. of parameters	1261
Absorption correction	Mutiscan
Absolute structure parameters	

The number of parameters refined in the least-squares process. If possible, this number should include some contribution from the restrained parameters. The restrained parameters are distinct from the constrained parameters (where one or more parameters are linearly dependent on the refined value of another). Least-squares restraints often depend on geometry or energy considerations and this makes their direct contribution to this number, and to the goodness-of-fit calculation, difficult to assess. Values = $0 \sim \text{infinity}$

The measure of absolute structure as defined by Flack (1983). For centrosymmetric structures, the only permitted value, if the data name is present, is 'inapplicable', represented by '.' . For noncentrosymmetric structures, the value must lie in the 99.97% Gaussian confidence interval -3u = x = x = 1 + 3u and a standard uncertainty (e.s.d.) u must be supplied. The <u>enumeration range</u> of 0.0:1.0 is correctly interpreted as meaning (0.0 - 3u) = x = (1.0 + 3u). Ref: Flack, H. D. (1983). Acta Cryst. A39, 876-881. Values = $0 \sim 1$

Goodness-of-fit on F ²	1.021
Final <i>R</i> indices $[I > 2\sigma(I)]^{a,b}$	$R_1 = 0.0672, wR_2 = 0.1478$
R indices (all data)	$R_1 = 0.1633, wR_2 = 0.1884$
Largest diff. peak and hole, $e \cdot Å^{-3}$	1.321 and -0.920

$$GooF = S = \sqrt{\frac{\sum w(F_o^2 - F_c^2)^2}{N_{Ref.} - N_{Par.}}}$$

 N_{Ref} : number of independent reflections N_{Par} : number of parameters

$$R_{1} = \frac{\sum ||F_{o}| - |F_{c}||}{\sum |F_{o}|}$$
$$wR_{2} = R_{w}(F^{2}) = \sqrt{\frac{\sum w(F_{o}^{2} - F_{c}^{2})^{2}}{\sum w(F_{o}^{2})^{2}}}$$

The largest and smallest values in electrons per angstrom cubed of the final **difference** electron density.

Validations

Factors	Good	Acceptable	Problematic	Really Problematic
$R_1(I > 2\sigma(I))$	< 5%	< 7%	> 10%	> 15%
wR_2 (all data)	< 12%	< 20%	$> 25\%$ (or $2R_1$)	> 35%
S	0.9-1.2	0.8-1.5	< 0.8 or > 2	< 0.6 or > 4

S should be around 1.

- S > 1: bad model or bad data/parameter ratio
- S < 1: model is better than the data: problems with the absorption correction, space group problems

R-factor depends on the signal-to noise ratio. S is relatively independent from the noise.

Acceptable values for residual electron density:

- For light atom structures $(H F) : < 0.5 \text{ e}^{-/\text{Å}} 3$
- For heavy atom structures : 10% of the electrons of the heavy atom per Å³ in a distance smaller 1.2 Å from the heavy atom. (Fourier truncation errors)
- Accumulation of electron density on special positions Usually should be less than 1 (-1)

testist:				
	0.42 at	0.2140 0.0398	icients Fo-Fc 8 0.5135 [0.40 4 0.6865 [0.53	