
2007년도 화학2 중간고/	사 (2007년 11월 29일)				
이름:	학번:	학과:			
 시험시간: 3:00 PM - 휴대전화는 끌 것. 지우개, 계산기는 서료 답은 각 문제에 주어 	로 빌려줄 수 없음.	네모의 크기와 답의 길이는			
간의 길이와 풀이과정 ● 시험에 필요한 상수니]과는 상관관계가 없음.	령을 적으라는 의미임. 빈 공			
문제수: 13Page 수: 4만점: 269점				K _{sp}	=
		50 M NaCH ₃ COO로 만들어 00 g의 NaOH를 첨가하였을	3. 다음의 암모니아 합성 반응		
때의 pH를 구하여라. (20			N₂(g	$) + 3H2(g) \Leftrightarrow 2NH3(g)$	
			25℃에서 N₂(g) 1 mol 당 위 음의 반응물과 생성물로 이택 이동하는 방향을 예측하여라.	루어진 혼합물이 평형에	
			(a) $P_{NH3} = 1.00$ atm, $P_{N2} =$	1.47 atm, $P_{H2} = 1.00 x$	10 ⁻² atm
			(b) $P_{NH3} = 1.00$ atm, $P_{N2} =$	1.00 atm, P _{H2} = 1.00 a	ıtm
		pH =			
	L				
2. Ag ₂ C ₂ O ₄ (s)의 포화 Ag ₂ C ₂ O ₄ (s) 의 K _{sp} 값은?		를 2.2 x 10 ⁻⁴ M 이다.			
Aga	${}_{2}C_{2}O_{4}(s) \Leftrightarrow 2Ag^{+}(aq) +$	C ₂ O ₄ ²⁻			

계(rhombic)의 고체구조를 하지만 95°C 이상에서는 단사정계(monoclinic)의 고체구조를 한다. 즉, 95°C에서 상전이 (phase transition)를 한다. (사방정계 고체 \rightarrow 단사정계 고체) (25점 =15+10)		
(a) $S_{H^{rac{1}{8}}} ightarrow S_{EH}$ 과정에 대한 \triangle H와 \triangle S의 부호를 예측하여라. (그 이유도 쓸 것)		

4. 녹는점 이하의 온도에서 고체는 경우에 따라 하나의 고체 구조에서 다른 고체 구조로 상(phase)이 변한다. 예를 들어, 황은 95° C 이하에서는 사방정

(a) 황 고체의 두 구조에서 어느 구조가 더 잘 정돈된 구조인가? (그 이유도 쓸 것)

5. 아래의 농도차 전지에서 오른쪽 비커의 Ag^+ 농도가 다음과 같을 때 25° C 에서 전지 전위를 계산하여라. 또, 환원전극(cathode), 산화전극(anode) 및 전자가 흐르는 방향은? (29점 = 19+10)

(a)	2	n	N.

전지전위	
환원전극	
산화전극	
전자가 흐르는 방향	

(b) 양쪽 비커의 Ag^+ 의 농도가 모두 $[Ag^+]=0.10$ M 일 때

전지전위	

6. Ag^+ 가 포함된 0.250 L의 용액에서 모든 은을 도금 석출시키는 데 2.00 A 전류를 이용하여 2분 30초가 걸렸다. 용액에서 원래 Ag^+ 의 농도는 얼마인 가? (15점)

$[Ag^{\dagger}] =$	М

7. 다음 원소들의 전자배치를 써라. (14점)

V	Cr	Mn	Fe
Co	Ni	Cu	Zn
			[Ar]4s ² 3d ¹⁰

8. CN⁻는 센장(강한장, strong field) 리간드로서 Cr 이온과 만나서 정팔면체 구조를 가지는 $[Cr(CN)_6]^{4-}$ 착이온을 형성한다. 다음 질문에 답하라. (46점 =5+5+15+21)

(a) [Cr(CN) ₆] ⁴⁻ 의 이름을 써라.		
(b) Cr의 산호	수는?	

(c) $[Cr(CN)_6]^{4-}$ 의 구조와 결합을 원자가결합이론 (Valence Bond Theory)으로 설명하여라.

(d) 결정장 이론(crystal Field Model)에 근거하여 $[Cr(CN)_6]^{4-}$ 착이온에서의 3d 궤도함수 에너지의 분리를 그림으로 표시하고 그림 위에 d-전자의 배치를 화살표로 표시하라. 홀전자 (unpaired electron)는 몇 개인가? 스핀 양자수 (S) 는 얼마인가? (오비탈의 이름도 그림위에 써라.)

그림	
흘전자의 수	
스핀양자수 (S)	

<i>시스</i> -다이클로에틸렌다이아민 백금(II) <i>cis</i> -아chloroethylendiamine platinum(II)	
[Ir(NH ₃) ₃ Cl ₃] (두가지 이성질체의 구조)	

10. 다음 탄소화합물의 이름 또는 구조를 그려라. (15점)

이름	구조		
	H ₂ C CH ₂		
	H₂C CH₂		
2-메틸-3-옥텐 (2-methyl-3-octene)			
	CI—OH		

11. 다음 반응의 생성물은 무엇인가? (10점)

CH ₃ CH ₂ OH KMnO ₄ (aq) ➤	
CH ₃ CH=CHCH ₃ + H ₂ Pt	

12. HCI, HBr 및 H₂O는 C-C 다중 결합에 첨가될 수 있다. H가 다중 결합의 한 탄소에 결합하고 CI, Br, 또는 OH가 다중 결합의 다른 탄소에 결합한다. 이럴 경우 두 가지 생성물이 가능한데, 그 중에서 주생성물은 다중 결합의 탄소 중에서 더 많은 수소와 결합하고 있는 탄소에 수소가 첨가되는 것이다. 이와 같은 규칙에 따라 다음 반응의 주생성물을 예측하여라. (15점)

CH ₃ CH ₂ CH=CH ₂ + H ₂ O →	
CH ₃ CH ₂ CH=CH ₂ + HBr——►	
CH ₃ CH ₂ C≡CH + 2HBr →	

- 13. 탄수화물은 단당류(monosaccharide, 조성식 CH₂O)의 단위체가 연결된 중합체(고분자)이다. 탄소 6개를 가지고 있는 단당류를 육탄당(hexose)라고 한다. 다음의 (a)는 육탄당 중의 하나인 D-glucose의 구조식이다. (25점=10+15)
- (a) D-glucose에 있는 키랄 탄소를 동그라미로 모두 표시하여라.

(b) (a)는 D-glucose가 사슬형태로 되어있는 것이다. 수용액에서는 보통 고리화(cyclization)가 되고, 고리형태로 된 D-glucose 단위체가 글리코사이드 결합(glycoside linkage)에 의하여 연결된 중합체가 되어 녹말(starch) 또는 셀룰로오스(cellulose) 등을 만든다. 수용액에서 D-glucose가 사슬형태에서 고리형태로 되는 과정과 고리형태 D-glucose의 구조를 그려라.

한 학기 동안 수고하였습니다. 성적은 웹사이트 bh.knu.ac.kr/~leehi 에 12월 3일~8일 사이에 공고될 예정이니 웹사이트를 꼭 확인하기 바랍니다.

- 여러 가지 상수들 -
- R (기체상수) = 0.08206 L•atm/(mol•K) = 8.314 J/(mol•K)
- Na의 원자량 = 22.99 g/mol
- H의 원자량 = 1.008 g/mol
- O의 원자량 = 16.00 g/mol
- Ag의 원자량 = 107.9 g/mol
- F (Faraday 상수) = 96485 C/(mol e⁻)

TABLE 17.1 Standard Reduction Potentials at 25°C (298 K) for Many Common Half-Reactions				
Half-Reaction	€° (V)	Half-Reaction	€° (V)	
$F_2 + 2e^- \rightarrow 2F^-$	2.87	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	0.40	
$Ag^{2+} + e^- \rightarrow Ag^+$	1.99	$Cu^{2+} + 2e^{-} \rightarrow Cu$	0.34	
$\text{Co}^{3-} + \text{e}^- \rightarrow \text{Co}^{2-}$	1.82	$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	0.27	
$H_2O_2 + 2H^- + 2e^- \rightarrow 2H_2O$	1.78	$AgCl + e^- \rightarrow Ag + Cl^-$	0.22	
$Ce^{4+} + e^{-} \rightarrow Ce^{3+}$	1.70	$SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2O$	0.20	
$PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$	1.69	$Cu^{2+} + e^{-} \rightarrow Cu^{+}$	0.16	
$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$	1.68	$2H^+ + 2e^- \rightarrow H_2$	0.00	
$2e^{-} + 2H^{+} + IO_{4}^{-} \rightarrow IO_{3}^{-} + H_{2}O$	1.60	$Fe^{3+} + 3e^{-} \rightarrow Fe$	-0.036	
$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	1.51	$Pb^{2+} + 2e^{-} \rightarrow Pb$	-0.13	
$Au^{3+} + 3e^- \rightarrow Au$	1.50	$Sn^{2+} + 2e^- \rightarrow Sn$	-0.14	
$PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$	1.46	$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23	
$Cl_2 + 2e^- \rightarrow 2Cl^-$	1.36	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.35	
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	1.33	$Cd^{2+} + 2e^{-} \rightarrow Cd$	-0.40	
$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	1.23	$Fe^{2+} + 2e^{-} \rightarrow Fe$	-0.44	
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	1.21	$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.50	
$IO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}I_2 + 3H_2O$	1.20	$Cr^{3+} + 3e^- \rightarrow Cr$	-0.73	
$Br_2 + 2e^- \rightarrow 2Br^-$	1.09	$Zn^{2+} + 2e^- \rightarrow Zn$	-0.76	
$VO_2^+ + 2H^+ + e^- \rightarrow VO^{2+} + H_2O$	1.00	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83	
$AuCl_4^- + 3e^- \rightarrow Au + 4Cl^-$	0.99	$Mn^{2+} + 2e^- \rightarrow Mn$	-1.18	
$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	0.96	$Al^{3+} + 3e^- \rightarrow Al$	-1.66	
$ClO_2 + e^- \rightarrow ClO_2^-$	0.954	$H_2 + 2e^- \rightarrow 2H^+$	-2.23	
$2Hg^{2+} + 2e^{-} \rightarrow Hg_{2}^{2+}$	0.91	$Mg^{2+} + 2e^- \rightarrow Mg$	-2.37	
$Ag^+ + e^- \rightarrow Ag$	0.80	$La^{3+} + 3e^{-} \rightarrow La$	-2.37	
$Hg_2^{2+} + 2e^- \rightarrow 2Hg$	0.80	$Na^+ + e^- \rightarrow Na$	-2.71	
$Fe^{3+} + e^- \rightarrow Fe^{2+}$	0.77	$Ca^{2+} + 2e^{-} \rightarrow Ca$	-2.76	
$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$	0.68	$Ba^{2+} + 2e^{-} \rightarrow Ba$	-2.90	
$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	0.56	$K^+ + e^- \rightarrow K$	-2.92	
$I_2 + 2e^- \rightarrow 2I^-$	0.54	$Li^+ + e^- \rightarrow Li$	-3.05	
$Cu^+ + e^- \rightarrow Cu$	0.52			