2008년도 화학2 기말고사 (2008년 12월 12일)				2일)		2. (10 + 20 = 30점) 우리 몸의 기관들은 대략 중성의 pH를 유지하고 있		
이름: 학번: 학과: ● 시험시간: 10:30 PM - 12:30 PM ● 휴대전화는 끌 것. ● 지우개, 계산기는 서로 빌려줄 수 없음. ● <u>답은 각 문제에 주어진 네모 안 에 적을 것</u> . 네모의 크기와 답의 길이는 상관관계가 없음.					:	다. 따라서, 우리 몸에서 일어나는 여러 가지 반응을 연구하기 위하여서는 중성의 pH를 유지시키면서 실험을 하여야 한다. TRIS(또는 trizma)는 이외		
					크기와 답	같은 목적에 적합한 완충용액을 만드는 데 유용하다. 수용액에서 TRIS으 응은 다음과 같고 TRIS의 K ₆ 는 1.19 x 10 ⁻⁶ 이다. (HOCH ₂) ₃ CNH ₂ + H ₂ O ⇔ (HOCH ₂) ₃ CNH ₃ ⁺ + OH ⁻ : TRIS TRISH ⁺		
간으 ● 실호 ● 문제 ● Pag	의 길이와 풀	이과정과는	= 경우는 풀 상관관계가 (터는 맨 뒤어	없음.	으라는 의미	임. 빈 공	(a) TRIS 완충용액의 최적 pH는 얼마인가?	
(1) 0.1 (2) 0.1 (3) 0.2 (4) 0.1	00 M KOH. 00 M KOH. 00 M KOH. 00 M KOH.	와 0.100 M 와 0.200 M 와 0.100 M 와 0.200 M	CH₃NH₃CI CH₃NH₂ CH₃NH₃CI CH₃NH₃CI	(1), (2), (3), 제서 물을 제 디기 전에 완	외한 주된 3	화학종들의	= Hq	
		한충용액으로		있는지 표시히	라.(Yes, N	o로 표시) 완충		
용액	K ⁺	OH ⁻	CH₃NH₃ ⁺	CH₃NH₂	CI	용액	(b) TRIS 500g과 TRISH ⁺ CI ⁻ 65.0g을 물에 녹여서 2.0 L의 용액을 만들었 다. 이 완충용액의 pH는 얼마인가? 이 완충용액 200.0 mL에 12 M의 HC	
(1)	0.100	(≃ 0)	0	0.100	0.100	No	0.50 mL를 가한 후의 pH는 얼마인가?	
(2)								
(3)								
(4)								
(b) 완:	총용액의 마	l를 구하여리	t. (CH₃NH₂	의 K _b = 4.38	x 10 ⁻⁴)			
		pl	1 =					

	10 = 20점) Ag₂SC 계산하여라.	O₄의 K _{sp} 는 1.2 x 10 ⁻⁵ 이다. 다음 용액에서의		
(a) 물				
			분자수의 차에 의해서 결정된	AS는 일반적으로 반응물과 생성물에 있는 기체 l다. 문제 4에서 반응물과 생성물에 있는 기체 하고 ΔS가 큰 양의 값을 가지는 이유를 설명하
			시오.	
(b) 0.10 N	M AgNO₃			
				하여 일반적인 질산염 중에서 용해도가 아주 작
			은 것에 속하는 Ba(NO₃)₂의 k	
			<u>화학종</u> Ba ²⁺ (aq)	ΔG _f °(kJ/mol) -561
			NO₃¯(aq) Ba(NO₃)₂(s)	-109 -797
4. (10점)	수소 기체에 의한	산화알루미늄의 환원반응		
	Al ₂ O ₃ (s) + 3	$3H_2(g) \rightarrow 2AI(s) + 3H_2O(g)$		
에서 QS _e	를 계산하시오.			
	<u>화합물</u> Al₂O₃(s)	S°(J/K·mol) 51		
	H₂(g) Al(s)	131 28		
	H₂O(g)	189		

$H_2(g) + Br_2(g) \Leftrightarrow 2HBr(g)$	
25° C 에서 1.00 L의 플라스크에 같은 몰 수의 $H_2(g)$ 와 $Br_2(g)$ 를 넣어 섞은 후 평형에 도달하게 하였다. 평형에서 정밀한 측정 기구를 사용하여 $H_2(g)$ 의 분자 수를 세었더니 1.10×10^{18} 개 였다. 처음에 $H_2(g)$ 와 $Br_2(g)$ 의 분압은 각각 1 atm 이었다.	
(a) 이상기체라고 가정하면 처음 $H_2(g)$ 와 $Br_2(g)$ 분자의 몰 수는 얼마인가? (둘 다 같으므로 하나만 계산)	
	8. (10 + 5 + 5 = 20점) 다음과 같은 갈바니 전지가 있다.
	b
(b) 위 반응의 평형상수 K는 얼마인가?	Pt [Fe ²⁺] = 1.0 M [Ag ⁺] = 1.0 M
	(a) 전지의 반응식과 전지 전위는?
(c) 위 반응의 ΔG°은 얼마인가?	
	(b) 전자가 흐르는 방향은 a, b 중 어느 것인지 고르고 그 이유를 써라.
	(c) 산화전극과 환원전극은 각각 어느 것인가?

7. (10 + 15 + 10 + 10 = 45점) 다음 반응의 ΔH°는 -103.8 kJ/mol 이다. (d) 위 반응의 ΔS°은 얼마인가?

9. (15점) 아래의 전지가 있다.	
Zn(s) Zn ²⁺ (aq, 1.00 M) Cu ²⁺ (aq, 1.00 M) Cu(s)	
25°C에서 반응이 충분히 진행되고 나서 <u>[Zn²⁺]가 처음 농도에서 0.20 mol/L</u> <u>만큼 변하였을 때</u> 전지 전위를 구하시오.	
	(b) (a)의 때 각 전극의 질량을 구하시오.
10. (15 + 10 = 25점) 아래의 전지가 있다.	
$Zn(s) Zn^{2+}(aq, 0.10 M) Cu^{2+}(aq, 2.50 M) Cu(s)$	
각 전극의 질량은 200 g 이다.	
(b) 10.0 A의 전류가 10시간 흐른 후 전지 전위를 계산하시오, (각 반쪽 전	단백질은 몸의 구성 성분 중의 하나로서 세포의 작용을 조절하는 기능을 기
지에는 1.0 L의 용액이 들어있다고 가정한다.)	지고 있는 분자이다. 단백질은 11 (5점) 가지 종류의 아미노산으로 이루어진 고분자로서, 단백질에서 개개의 아미노산(amino acid)은 펩
	타이드 결합(peptide linkage)에 의하여 서로 연결되어 있다. 다음 그림은 두 개의 아미노산이 연결된 dipeptide가 서로 연결되어 있는 그림이다.
	12. (10점) 다음의 네모에 펩타이드 결합을 그릴 것
	H ₂ N——CH−
	R_1 R_2

13. (3 x 10 = 30점) 다음 각 알코올의 체계명을 쓰고, 이 알코올이 일차, 이차, 삼차인지 분류하시오.
(a)
ОН
(b)
OH Br
(c) CICH ₂ CH ₂ CH ₂ OH
44 (40점) 디오이 조화돼로 제품된지 이렇지 때으로 다이됐는 다양이지?
14. (10점) 다음의 중합체를 제조하기 위하여 필요한 단위체는 무엇인가?
F F F F
15. (3 x 5 = 15점) 알데하이드를 산화시켜 카르복실 산을 얻는다. 다음의
알데하이드를 산화 시킬 때 생성되는 생성물의 구조를 그리시오. (a) 프로판알
(b) 2,3-다이메틸펜탄알

- 상수 -

- R (기체상수) = 0.08206 L•atm/(mol•K) = 8.314 J/(mol•K)
- F (파라데이상수) = 96,485 C/mol
- 아보가드로수 = 6.022 x 10²³/mol
- H의 원자량 = 1.008 g/mol
- C의 원자량 = 12.01 g/mol
- O의 원자량 = 16.00 g/mol
- N의 원자량 = 14.01 g/mol
- CI의 원자량 = 34.45 g/mol
- Cu의 원자량 = 63.55 g/mol
- Ag의 원자량 = 65.38 g/mol

TABLE 17.1 Standard Reduction Potentials at 25°C (298 K) for Many Common Half-Reactions

Half-Reaction	€° (V)	Half-Reaction	€° (V)
$F_2 + 2e^- \rightarrow 2F^-$	2.87	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	0.40
$Ag^{2+} + e^- \rightarrow Ag^+$	1.99	$Cu^{2+} + 2e^{-} \rightarrow Cu$	0.34
$\text{Co}^{3-} + \text{e}^- \rightarrow \text{Co}^{2-}$	1.82	$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	0.27
$H_2O_2 + 2H^- + 2e^- \rightarrow 2H_2O$	1.78	$AgCl + e^- \rightarrow Ag + Cl^-$	0.22
$Ce^{4+} + e^{-} \rightarrow Ce^{3+}$	1.70	$SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2O$	0.20
$PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$	1.69	$Cu^{2+} + e^- \rightarrow Cu^+$	0.16
$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$	1.68	$2H^+ + 2e^- \rightarrow H_2$	0.00
$2e^{-} + 2H^{+} + IO_{4}^{-} \rightarrow IO_{3}^{-} + H_{2}O$	1.60	$Fe^{3+} + 3e^{-} \rightarrow Fe$	-0.036
$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	1.51	$Pb^{2+} + 2e^{-} \rightarrow Pb$	-0.13
$Au^{3+} + 3e^- \rightarrow Au$	1.50	$\mathrm{Sn}^{2+} + 2\mathrm{e}^{-} \rightarrow \mathrm{Sn}$	-0.14
$PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$	1.46	$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23
$Cl_2 + 2e^- \rightarrow 2Cl^-$	1.36	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.35
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	1.33	$Cd^{2+} + 2e^{-} \rightarrow Cd$	-0.40
$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	1.23	$Fe^{2+} + 2e^{-} \rightarrow Fe$	-0.44
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	1.21	$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.50
$IO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}I_2 + 3H_2O$	1.20	$Cr^{3+} + 3e^{-} \rightarrow Cr$	-0.73
$Br_2 + 2e^- \rightarrow 2Br^-$	1.09	$Zn^{2+} + 2e^- \rightarrow Zn$	-0.76
$VO_2^+ + 2H^+ + e^- \rightarrow VO^{2+} + H_2O$	1.00	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83
$AuCl_4^- + 3e^- \rightarrow Au + 4Cl^-$	0.99	$Mn^{2+} + 2e^- \rightarrow Mn$	-1.18
$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	0.96	$Al^{3+} + 3e^- \rightarrow Al$	-1.66
$ClO_2 + e^- \rightarrow ClO_2^-$	0.954	$H_2 + 2e^- \rightarrow 2H^+$	-2.23
$2Hg^{2+} + 2e^{-} \rightarrow Hg_2^{2+}$	0.91	$Mg^{2+} + 2e^- \rightarrow Mg$	-2.37
$Ag^+ + e^- \rightarrow Ag$	0.80	$La^{3+} + 3e^- \rightarrow La$	-2.37
$Hg_2^{2+} + 2e^- \rightarrow 2Hg$	0.80	$Na^+ + e^- \rightarrow Na$	-2.71
$Fe^{3+} + e^- \rightarrow Fe^{2+}$	0.77	$Ca^{2+} + 2e^{-} \rightarrow Ca$	-2.76
$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$	0.68	$Ba^{2+} + 2e^{-} \rightarrow Ba$	-2.90
$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	0.56	$K^+ + e^- \rightarrow K$	-2.92
$I_2 + 2e^- \rightarrow 2I^-$	0.54	$Li^+ + e^- \rightarrow Li$	-3.05
$Cu^+ + e^- \rightarrow Cu$	0.52		