| 이름:   | 학번:   | 학과: |
|-------|-------|-----|
| 비밀번호: | (4자리) |     |

- 시험시간: 10:30 AM 12:30 PM
- 휴대전화는 끌 것.
- 지우개, 계산기는 서로 빌려줄 수 없음.
- <u>답은 각 문제에 주어진 네모 안 에 적을 것</u>. 네모 안에 빈 공간이 있는 경우는 풀이 과정을 적으라는 의미임. 빈 공간의 길이와 풀이 과정과는 상관관계가 없음. <u>답을 적을 때 항상 단위도 정확히 적을 것</u>.
- 풀이에 필요한 상수나 데이터는 맨 뒤에 있음.
- 문제수: 12 ● Page 수: 5
- 만점: 300점
- 1. (6+4+6=16점) 다음과 같은 반응 메커니즘을 생각하여보자.

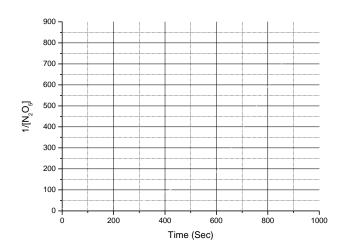
(a) 각 단일단계반응에서 분자도는 얼마인가?

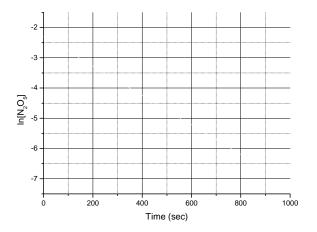
| 단일 단계 반응                                  | 분자도 |
|-------------------------------------------|-----|
| NO <sub>2</sub> CI → NO <sub>2</sub> + CI |     |
| CI + H <sub>2</sub> O → HCI + OH          |     |
| OH + NO <sub>2</sub> → HNO <sub>3</sub>   |     |

(b) 위 반응의 전체 반응식을 쓰시오.

(c) 반응 중간체를 모두 쓰시오.

2. (5+18+5+10+5+10+15+10+15=83점) N<sub>2</sub>O<sub>5</sub>(*g*)는 분해되어 NO<sub>2</sub>(*g*)와 O<sub>2</sub>(*g*)로 된다. 이 분해반응의 활성화에너지를 알아내기 위하여 338 K와 318 K의 두 온도에서 실험을 하고 N<sub>2</sub>O<sub>5</sub>의 농도를 시간에 따라 측정하였다.


| 시간(s)  | [N₂O                    | <sub>5</sub> ] (M)      |  |
|--------|-------------------------|-------------------------|--|
| VIE(8) | T = 338 K               | T = 318 K               |  |
| 0      | 1.00 x 10 <sup>-1</sup> | 1.00 x 10 <sup>-1</sup> |  |
| 100.   | 6.14 x 10 <sup>-2</sup> | 9.54 x 10 <sup>-2</sup> |  |
| 300.   | 2.33 x 10 <sup>-2</sup> | 8.63 x 10 <sup>-2</sup> |  |
| 600.   | 5.41 x 10 <sup>-3</sup> | 7.43 x 10 <sup>-2</sup> |  |
| 900.   | 1.26 x 10 <sup>-3</sup> | 6.39 x 10 <sup>-2</sup> |  |


(a) 위 분해반응의 균형잡힌 화학반응식을 쓰시오.

| Г |  |  |  |
|---|--|--|--|
| П |  |  |  |
| П |  |  |  |
| П |  |  |  |

(b) T = 338 K의 데이터를 이용하여 다음의 빈칸에  $\frac{1}{[N_2O_5]}$  값과  $\ln[N_2O_5]$  값을 계산하여 적어 넣고 주어진 그래프 용지 위에  $\frac{1}{[N_2O_5]}$  대 시간,  $\ln[N_2O_5]$  대 시간을  $\blacksquare$  로 표시하시오. 점들 사이는 직선으로 연결하시오.

|       | T = 338 K                            |                      |                 |
|-------|--------------------------------------|----------------------|-----------------|
| 시간(s) | [N <sub>2</sub> O <sub>5</sub> ] (M) | $\frac{1}{[N_2O_5]}$ | $\ln{[N_2O_5]}$ |
| 0     | 1.00 x 10 <sup>-1</sup>              | 10.0                 | -2.303          |
| 100.  | 6.14 x 10 <sup>-2</sup>              |                      |                 |
| 300.  | 2.33 x 10 <sup>-2</sup>              |                      |                 |
| 600.  | 5.41 x 10 <sup>-3</sup>              |                      |                 |
| 900.  | 1.26 x 10 <sup>-3</sup>              |                      |                 |





(c) 위 반응의 속도식 (미분 속도식)을 적으시오. (속도상수는 k로 표시할 것)

(d) T = 338 K에서 위 반응의 속도 상수를 구하시오.

| <b>今</b> |
|----------|
| 속도 상수:   |
|          |

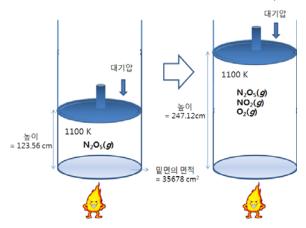
(e) T = 318 K에서 위 반응의 속도 상수를 구하시오. (아래의 표에  $\frac{1}{[N_2O_5]}$  값과  $\ln[N_2O_5]$  값 중 속도상수를 구하는 데 필요한 계산 값을 채워 넣고 속도상수를 구할 것)

|       | T = 318 K                            |                      |                 |
|-------|--------------------------------------|----------------------|-----------------|
| 시간(s) | [N <sub>2</sub> O <sub>5</sub> ] (M) | $\frac{1}{[N_2O_5]}$ | $\ln{[N_2O_5]}$ |
| 0     | 1.00 x 10 <sup>-1</sup>              |                      |                 |
| 100.  | 9.54 x 10 <sup>-2</sup>              |                      |                 |
| 300.  | 8.63 x 10 <sup>-2</sup>              |                      |                 |
| 600.  | 7.43 x 10 <sup>-2</sup>              |                      |                 |
| 900.  | 6.39 x 10 <sup>-2</sup>              |                      |                 |

| ### ### #############################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |                                                                       |                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------|
| (0) 화학병용이 월이나가 위해서는 본자를 사이의 충돌이 일어나아 한다. 이 경한 이름을 충돌이센인라고 한다. Arrehnius는 반응의 속도상수(0)와 확성 회에나지(clowidon Energy, E) 그리고 온도(T)와의 콘게가 다음과 같다는 경을 알아내었다.  k = Aexp(-E_ATT) 이를 Arthenius의 식이라고 한다. 여기서 A는 Frequency Factor(왕음물) 라고 하는 상수이다.  Arrhenius의 식을 이용하여, 두 온도(Tr. Ta)에서 속도성수(N, N)를 일연 반응의 활성회에너지(closis)를 할 수 있다. EL를 구하는 식(Tr. Ta, N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                       |                    |
| (0) 화학병용이 월이나가 위해서는 본자를 사이의 충돌이 일어나아 한다. 이 경한 이름을 충돌이센인라고 한다. Arrehnius는 반응의 속도상수(0)와 확성 회에나지(clowidon Energy, E) 그리고 온도(T)와의 콘게가 다음과 같다는 경을 알아내었다.  k = Aexp(-E_ATT) 이를 Arthenius의 식이라고 한다. 여기서 A는 Frequency Factor(왕음물) 라고 하는 상수이다.  Arrhenius의 식을 이용하여, 두 온도(Tr. Ta)에서 속도성수(N, N)를 일연 반응의 활성회에너지(closis)를 할 수 있다. EL를 구하는 식(Tr. Ta, N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                       |                    |
| (0) 화학병용이 월이나가 위해서는 본자를 사이의 충돌이 일어나아 한다. 이 경한 이름을 충돌이센인라고 한다. Arrehnius는 반응의 속도상수(0)와 확성 회에나지(clowidon Energy, E) 그리고 온도(T)와의 콘게가 다음과 같다는 경을 알아내었다.  k = Aexp(-E_ATT) 이를 Arthenius의 식이라고 한다. 여기서 A는 Frequency Factor(왕음물) 라고 하는 상수이다.  Arrhenius의 식을 이용하여, 두 온도(Tr. Ta)에서 속도성수(N, N)를 일연 반응의 활성회에너지(closis)를 할 수 있다. EL를 구하는 식(Tr. Ta, N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                       |                    |
| (0) 화학병용이 월이나가 위해서는 본자를 사이의 충돌이 일어나아 한다. 이 경한 이름을 충돌이센인라고 한다. Arrehnius는 반응의 속도상수(0)와 확성 회에나지(clowidon Energy, E) 그리고 온도(T)와의 콘게가 다음과 같다는 경을 알아내었다.  k = Aexp(-E_ATT) 이를 Arthenius의 식이라고 한다. 여기서 A는 Frequency Factor(왕음물) 라고 하는 상수이다.  Arrhenius의 식을 이용하여, 두 온도(Tr. Ta)에서 속도성수(N, N)를 일연 반응의 활성회에너지(closis)를 할 수 있다. EL를 구하는 식(Tr. Ta, N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                       |                    |
| (0) 화학병용이 월이나가 위해서는 본자를 사이의 충돌이 일어나아 한다. 이 경한 이름을 충돌이센인라고 한다. Arrehnius는 반응의 속도상수(0)와 확성 회에나지(clowidon Energy, E) 그리고 온도(T)와의 콘게가 다음과 같다는 경을 알아내었다.  k = Aexp(-E_ATT) 이를 Arthenius의 식이라고 한다. 여기서 A는 Frequency Factor(왕음물) 라고 하는 상수이다.  Arrhenius의 식을 이용하여, 두 온도(Tr. Ta)에서 속도성수(N, N)를 일연 반응의 활성회에너지(closis)를 할 수 있다. EL를 구하는 식(Tr. Ta, N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                       |                    |
| (0) 화학병용이 월이나가 위해서는 본자를 사이의 충돌이 일어나아 한다. 이 경한 이름을 충돌이센인라고 한다. Arrehnius는 반응의 속도상수(0)와 확성 회에나지(clowidon Energy, E) 그리고 온도(T)와의 콘게가 다음과 같다는 경을 알아내었다.  k = Aexp(-E_ATT) 이를 Arthenius의 식이라고 한다. 여기서 A는 Frequency Factor(왕음물) 라고 하는 상수이다.  Arrhenius의 식을 이용하여, 두 온도(Tr. Ta)에서 속도성수(N, N)를 일연 반응의 활성회에너지(closis)를 할 수 있다. EL를 구하는 식(Tr. Ta, N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                       |                    |
| (0) 화학병용이 월이나가 위해서는 본자를 사이의 충돌이 일어나아 한다. 이 경한 이름을 충돌이센인라고 한다. Arrehnius는 반응의 속도상수(0)와 확성 회에나지(clowidon Energy, E) 그리고 온도(T)와의 콘게가 다음과 같다는 경을 알아내었다.  k = Aexp(-E_ATT) 이를 Arthenius의 식이라고 한다. 여기서 A는 Frequency Factor(왕음물) 라고 하는 상수이다.  Arrhenius의 식을 이용하여, 두 온도(Tr. Ta)에서 속도성수(N, N)를 일연 반응의 활성회에너지(closis)를 할 수 있다. EL를 구하는 식(Tr. Ta, N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                       |                    |
| (0) 화학병용이 월이나가 위해서는 본자를 사이의 충돌이 일어나아 한다. 이 경한 이름을 충돌이센인라고 한다. Arrehnius는 반응의 속도상수(0)와 확성 회에나지(clowidon Energy, E) 그리고 온도(T)와의 콘게가 다음과 같다는 경을 알아내었다.  k = Aexp(-E_ATT) 이를 Arthenius의 식이라고 한다. 여기서 A는 Frequency Factor(왕음물) 라고 하는 상수이다.  Arrhenius의 식을 이용하여, 두 온도(Tr. Ta)에서 속도성수(N, N)를 일연 반응의 활성회에너지(closis)를 할 수 있다. EL를 구하는 식(Tr. Ta, N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AC 11.1.                                                                                                |                                                                       |                    |
| 관련 이름은 충돌어(무이기의 현대, Arrehnius는 변경의 속도상수(NS) 활성 경제(대)(Archardon Energy, E.) 그리고 온도(T)와의 관계가 다음과 같다는 것을 없어내었다.  k = Aexp(-E_/RT)  # Arrhenius의 식의라고 한다. 여기서 A는 Frequency Factor(유료함) 라고 하는 실수이다.  Arrhenius의 식의 아울려면, 두 온도(Tr, Tg)에서 속도상수(k, k)를 얻던 받음의 활성 환성에내지(도)를 할 수 있다. E.를 구하는 식(Tr, Tz, ki, ke를 포함을 유도하여군.  # K (에의 N.C.) 기계의 광고 운동에너지를 구하고 N <sub>C</sub> O, 분례반응의 출선에너지는 광고 운동에너지의 및 배인지 결명하시오.  # K (에의 N.C.) 기계의 광고 운동에너지의 및 배인지 결명하시오.  # C (의 취임 전문 전에 전체 문자의 제공생균은 속도(root mean squeeze)  # K (에의 N.C.) 기계의 광고 운동에너지를 구하고 N <sub>C</sub> O, 분례반응의 출선에너지는 광고 운동에너지의 및 배인지 결명하시오.  # K (에의 N.C.) 기계의 광고 운동에너지의 및 배인지 결명하시오.  # C (의 유리는 공학) 900 °C에서 다음 반응의 K, = 1.04 이다.  # C (으CO)(공) 같은 CO(요) + CO(요)  # C 은도(여성 2006 °C)에서 다음 반응의 K, = 1.04 이다.  # C 은도(여성 2006 °C)에서 다음 반응의 K, = 1.04 이다.  # C 은도(여성 2006 °C)에서 다음 반응의 제공 기에서 도라이어이스를 가진, 다음 표는 참 어떤 함께 함께 되었다. 그 그 문 전원에 변경되고 하지, 다음 표는 참 어떤 함께 함께 되었다. 그 기계를 본입하게 되었다. 그 기계를 본입하게 되었다. 그 기계를 보면 함께 함께 되었다. 그 기계를 본입하게 되었다. 그 기계를 보면 함께 되었다. 그 구축인에 다시 및 전문이 및 2 255 유매 및 1 100 및                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 목도 상수:                                                                                                  |                                                                       |                    |
| ### 25 중 등 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 러한 이론을 충돌이론이라고 한다. Arrehnius는 반응의 속도상수(k)와 활성화에너지(Activation Energy, Ea) 그리고 온도(T)와의 관계가 다음과 같다는        |                                                                       |                    |
| 이를 Armenius의 식의 이용하여, 두 온도(T, T,)에서 속도상수(K, K, K)를 알면 반응의 활성화에너지(E)를 알 수 있다. E,를 구하는 식(T), T <sub>2</sub> , K, K를 잘한 분양의 활성화에너지(E)를 알 수 있다. E,를 구하는 식(T), T <sub>2</sub> , K, K를 포함)을 유도하여라.  (a) 위 반응의 활성화에너지(E)를 알 수 있다. E,를 구하는 식(T), T <sub>2</sub> , K, K를 포함)을 유도하여라.  (b) 레시의 N <sub>C</sub> O, 기계의 평균 운동에너지의 및 배인지 결정하시오.  (c) 에서의 N <sub>C</sub> O, 기계의 평균 운동에너지의 및 배인지 결정하시오.  (d) 위 반응의 활성화에너지(E)를 알 수 있다. E,를 구하는 식(T), T <sub>2</sub> , K, K를 포함 등 (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $k = Aexp(-E_e/RT)$                                                                                     | ㅊ다 초도스·                                                               |                    |
| 라고 하는 상수이다.  Arrhentus의 식을 이용하여, 두 온도(T, T)에서 속도삼수(K, K)를 얻던 반응의 활성화에너지(C)를 할 수 있다. 토를 구하는 식(T, Ts. Kr. K를 포함)을 유도하여라.  (a) 위 반응의 활성화에너지를 구하고 Nc.이 분해 반응의 활성에너지의 및 해인지 결정하시오.  (b) 위 반응의 활성화에너지를 구하고 Nc.이 분해 반응의 활성에너지의 및 해인지 결정하시오.  (c) 위 반응의 활성화에너지를 구하고 Nc.이 분해 반응의 활성에너지는 평균 운동에너지의 및 해인지 결정하시오.  (d) 위 반응의 활성화에너지를 구하고 Nc.이 분해 반응의 활성에너지는 평균 운동에너지의 및 해인지 결정하시오.  (e) 위 반응의 활성화에너지를 구하고 Nc.이 분해 반응의 있는 전체 반응의 K, = 1.04 이다.  (i) 절대용도 T에서 기제 분자의 제공됐군은 속도(Oot Mean Squi Volocity, umple 및 해인지 결정하시오.  (ii) 절대용도 T에서 기계 분자의 제공됐군은 속도(Oot Nc. Ta. Kr. Kr. Kr. Mean Nc.이 기계의 분고 운동에너지의 및 해인지 결정하시오.  (ii) 절대용도 T에서 기계 분자의 제공됐군은 속도(Oot Nc. Ta. Kr. Kr. Kr. Mean Nc.이 기계의 분고 운동에너지의 및 해인지 결정하시오.  (iii) 절대용도 T에서 기계 분자의 항의 상징에너지를 가하고 Nc. Arr 제공됐다는 지수에 있는 전체 200.0 *C에서 다음 반응의 Kr. = 1.04 이다.  (iii) 절대용도 T에서 기계 분자의 및 해인지 결정하시오.  (iii) 절대용도 T에서 기계 분자의 및 해인지 결정하시오.  (iii) 절대용도 전에서 기계 분자의 제공됐다는 지수에 가입니 전에 되었다는 그 없는 시간 보통 후 함께 도달하게 하였다. 그 요 숙선간에 다시 명한 200.0 *C에 삼당 시간 보통 후 함께 도달하게 하였다. 그 요 숙선간에 다시 명한 200.0 *C에 삼당 시간 보통 후 함께 도달하게 하였다. 그 요 숙선간에 다시 명한 200.0 *C에 삼당 시간 보통 후 함께 도달하게 하였다. 그 요 숙선간에 다시 명한 200.0 *C에 삼당 시간 보통 후 함께 도달하게 하였다. 그 요 숙선간에 다시 명한 200.0 *C에 삼당 시간 보통 후 함께 도달하게 하였다. 그 요 숙선간에 다시 명한 200.0 *C에 삼당 시간 보통 후 함께 도달하게 하였다. 그 요 숙선에 다시 명한 200.0 *C에 삼당 시간 보통 후 함께 도달하게 하였다. 그 요 숙선에 다시 명한 200.0 *C에 삼당 시간 보통 후 함께 도달하게 하였다. 그 요 숙선에 다시 명한 200.0 *C에 삼당 시간 보통 후 함께 도달하게 하였다. 그 요 숙선에 다시 명한 200.0 *C에 삼당 시간 보통 후 함께 도달하게 하였다. 그 요 숙선에 다시 명한 200.0 *C에 삼당 시간 보통 후 함께 도달하게 하였다. 그 요 숙선에 다시 명한 200.0 *C에 삼당 시간 보통 후 함께 도달하게 하였다. 그 요 숙선에 다시 명한 200.0 *C에 삼당 시간 보통 후 함께 도달하게 하였다. 그 요 숙선에 다시 명한 200.0 *C에 삼당 시간 보통 후 함께 도달하게 하였다. 그 요 숙선에 다시 명한 200.0 *C에 삼당 시간 보통 후 함께 도달하게 하였다. 그 요 숙선에 다시 명한 200.0 *C에 삼당 시간 보통 함께 보통 함께 도달하게 하였다. 그 요 숙선에 다시 명한 200.0 *C에 삼당 시간 보통 함께 보통 200.0 *C에 삼당 시간 보통 200.0 *C에 사람 전혀 200.0 *C에                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 이로 Arrhanius의 시에지고 하다. 어기부 A는 Fraguancy Footor(자유로)                                                     | 소경 중출구,                                                               |                    |
| (g) 위 반응의 활성화에너지를 구하시오.  (g) 위 반응의 활성화에너지를 함 할 수 있다. 타를 구하는 식(Ti, To, ki, ki를 알면 받음의 함성화에너지(E)를 할 수 있다. 타를 구하는 식(Ti, To, ki, ki를 포함)을 유도하여라.  (g) 위 반응의 활성화에너지를 구하지오.  (g) 위 반응의 활성화에너지를 구하지오.  (h) 역시의 N <sub>2</sub> O <sub>2</sub> 기계 전에 경우 조용에너지의 불구하고 N <sub>2</sub> O <sub>3</sub> 분해반음의 함성에너지는 평균 운동에너지의 및 배인지 결정하시오.  (ii) 역시의 N <sub>2</sub> O <sub>2</sub> 기계 전에 경우 전문에너지 및 배인지 결정하시오.  (iii) 역시의 N <sub>2</sub> O <sub>3</sub> 기계 전에 있는 지원에 기계 분사의 제결성으로 독표(FOOT mean Sau velocity, v <sub>min</sub> )는 Q <sup>2</sup> 기계 (M·본자망) 로 주어진다. 이를 이용하여 T = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         |                                                                       |                    |
| 변경의 활성화에너지를 함 수 있다. 단를 구하는 식(Ti, Ti, Ki, Ke를 표정)을 유도하여라.  [대한 기계 반공의 활성화에너지를 구하시오.]  [대한 기계 반공의 활성화에너지를 구하고 사람이 있다. 기계 반공의 기계 가입으로 기계                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 대표 에는 8구에다.                                                                                             |                                                                       |                    |
| 변경의 활성화에너지를 함 수 있다. 단를 구하는 식(Ti, Ti, Ki, Ke를 표정)을 유도하여라.  [대한 기계 반공의 활성화에너지를 구하시오.]  [대한 기계 반공의 활성화에너지를 구하고 사람이 있다. 기계 반공의 기계 가입으로 기계                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arrhenius의 식을 이용하여, 두 온도(T <sub>1</sub> , T <sub>2</sub> )에서 속도상수(k <sub>1</sub> , k <sub>2</sub> )를 알면 | velocity, $u_{rms}$ )는 $\sqrt{\frac{3RT}{M}}$ (M:분자량) 로 주어진다. 이를 이용하여 | T = 338            |
| (g) 위 반응의 활성화에너지를 구하시오.  (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>o</sub> = 1.04 이다.  CaCO <sub>g</sub> (s) 는 CaO <sub>g</sub> (s) 는 C |                                                                                                         |                                                                       |                    |
| (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>e</sub> = 1.04 이다.  CaCO <sub>2</sub> (s) ➡ CaCO <sub>3</sub> ← CaCO <sub>4</sub> ← CO <sub>4</sub> (g)  낮은 온도(영화 200.0 °C)에서 드라이아이스(교체 CO <sub>2</sub> ), 산화칼슘(CaO(e) 산환함(GaCO <sub>5</sub> (s))를 50.0 L 용기에 낼고, 9000 °C로 순식간에 가열하는 다음 판소 병상 산화칼슘(CaCO <sub>5</sub> (s))를 20.0 분위에 낼고, 90.0 °C로 순식간에 가열하는 다음 판소 병상 산화칼슘(CaCO <sub>5</sub> (s))의 질량과 용기에서 드라이아이스 기체로 변화였을 때의 알락이다.  실행 CaCO <sub>5</sub> CaO P <sub>CC</sub> 수 CaCO P <sub>CC</sub> + CaCO P <sub>CC</sub> + CaCO P <sub>C</sub> + CaCO <sub>5</sub> + CaCO P <sub>C</sub> + CaCO <sub>5</sub> + Ca       | 포함)을 유도하여라.                                                                                             |                                                                       | - = O.             |
| (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고제 CO <sub>2</sub> ), 산화칼슘(CaO(s) 탄산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하 드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어 산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                       |                    |
| (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고제 CO <sub>2</sub> ), 산화칼슘(CaO(s) 탄산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하 드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어 산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                       |                    |
| (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고제 CO <sub>2</sub> ), 산화칼슘(CaO(s) 탄산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하 드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어 산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                       |                    |
| (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고제 CO <sub>2</sub> ), 산화칼슘(CaO(s) 탄산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하 드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어 산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                       |                    |
| (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고제 CO <sub>2</sub> ), 산화칼슘(CaO(s) 탄산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하 드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어 산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                       |                    |
| (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고제 CO <sub>2</sub> ), 산화칼슘(CaO(s) 탄산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하 드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어 산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                       |                    |
| (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고제 CO <sub>2</sub> ), 산화칼슘(CaO(s) 탄산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하 드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어 산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                       |                    |
| (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고제 CO <sub>2</sub> ), 산화칼슘(CaO(s) 탄산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하 드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어 산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                       |                    |
| (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고제 CO <sub>2</sub> ), 산화칼슘(CaO(s) 탄산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하 드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어 산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                       |                    |
| (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고제 CO <sub>2</sub> ), 산화칼슘(CaO(s) 탄산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하 드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어 산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                       |                    |
| (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고제 CO <sub>2</sub> ), 산화칼슘(CaO(s) 탄산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하 드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어 산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                       |                    |
| (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고제 CO <sub>2</sub> ), 산화칼슘(CaO(s) 탄산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하 드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어 산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                       |                    |
| (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고제 CO <sub>2</sub> ), 산화칼슘(CaO(s) 탄산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하 드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어 산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                       |                    |
| (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고제 CO <sub>2</sub> ), 산화칼슘(CaO(s) 탄산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하 드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어 산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                       |                    |
| (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고제 CO <sub>2</sub> ), 산화칼슘(CaO(s) 탄산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하 드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어 산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                       |                    |
| (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고제 CO <sub>2</sub> ), 산화칼슘(CaO(s) 탄산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하 드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어 산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                       |                    |
| (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고제 CO <sub>2</sub> ), 산화칼슘(CaO(s) 탄산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하 드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어 산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                       |                    |
| (g) 위 반응의 활성화에너지를 구하시오.  3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고제 CO <sub>2</sub> ), 산화칼슘(CaO(s) 탄산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하 드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어 산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                       |                    |
| 3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고체 CO <sub>2</sub> ), 산화칼슘(CaO(s)한산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스기체로 변하였을 때의 압력이다.    실험                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                         | 답:                                                                    |                    |
| 3. (12+15=27점) 900 °C에서 다음 반응의 K <sub>p</sub> = 1.04 이다.  CaCO <sub>3</sub> (s) ⇌ CaO(s) + CO <sub>2</sub> (g)  낮은 온도(영하 200.0 °C)에서 드라이아이스(고체 CO <sub>2</sub> ), 산화칼슘(CaO(s)한산칼슘(CaCO <sub>3</sub> (s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열하드라이아이스가 CO <sub>2</sub> 기체로 순식간에 변하였다고 하자. 다음 표는 넣어산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스기체로 변하였을 때의 압력이다.    실험                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (a) 의 바오이 확석하에너지로 그하시요                                                                                  |                                                                       |                    |
| 낮은 온도(영하 200.0 °C)에서 드라이아이스(고체 CO₂), 산화칼슘(CaO(s) 탄산칼슘(CaCO₃(s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열히 드라이아이스가 CO₂ 기체로 순식간에 변하였다고 하자. 다음 표는 넣0 산화칼슘(CaO(s)), 탄산칼슘(CaCO₃(s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실험                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (y) 게 단증의 불성화에다시골 포에시고.                                                                                 | 3. (12+15=27점) 900 °C에서 다음 반응의 Kp = 1.04 이다.                          |                    |
| 탄산칼슘(CaCO₃(s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열히 드라이아이스가 CO₂ 기체로 순식간에 변하였다고 하자. 다음 표는 넣0 산화칼슘(CaCO₃(s)), 탄산칼슘(CaCO₃(s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         | $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$                       |                    |
| 탄산칼슘(CaCO₃(s))을 50.0 L 용기에 넣고, 900.0 °C로 순식간에 가열히 드라이아이스가 CO₂ 기체로 순식간에 변하였다고 하자. 다음 표는 넣0 산화칼슘(CaCO₃(s)), 탄산칼슘(CaCO₃(s))의 질량과 용기에서 드라이아이스 기체로 변하였을 때의 압력이다.    실형                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         | 나오 오도(영차 200.0 °C)에서 드라이아이스(고웹 CC.) 사원카스                              | ≆(CaO( <i>e</i> )) |
| □라이아이스가 CO₂ 기체로 순식간에 변하였다고 하자. 다음 표는 넣0<br>산화칼슘(CaO(s)), 탄산칼슘(CaCO₃(s))의 질량과 용기에서 드라이아이스<br>기체로 변하였을 때의 압력이다.    실험                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                       |                    |
| 산화칼슘(CaO(s)), 탄산칼슘(CaCO <sub>3</sub> (s))의 질량과 용기에서 드라이아이스<br>기체로 변하였을 때의 압력이다.    실험                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |                                                                       |                    |
| 실험 CaCO₃ CaO P <sub>CO2</sub> 1 655 g 95.0 g 2.55 atm 2 780 g 1.00 g 1.04 atm 3 0.14 g 5000. g 1.04 atm 4 715 g 813 g 0.211 atm  (a) 위 용기를 900.0 °C에 상당 시간 놔둔 후 평형에 도달하게 하였다. 그 교 순식간에 다시 영하 200.0 °C로 온도를 낮추었다. 이 때 드라이아이스                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                                       |                    |
| 1 655 g 95.0 g 2.55 atm 2 780 g 1.00 g 1.04 atm 3 0.14 g 5000. g 1.04 atm 4 715 g 813 g 0.211 atm  Ea:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         | 기체로 변하였을 때의 압력이다.                                                     |                    |
| 1 655 g 95.0 g 2.55 atm 2 780 g 1.00 g 1.04 atm 3 0.14 g 5000. g 1.04 atm 4 715 g 813 g 0.211 atm  Ea:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         | 실험 CaCOa CaO P~                                                       |                    |
| 2     780 g     1.00 g     1.04 atm       3     0.14 g     5000. g     1.04 atm       4     715 g     813 g     0.211 atm   (a) 위 용기를 900.0 °C에 상당 시간 놔둔 후 평형에 도달하게 하였다. 그 순식간에 다시 영하 200.0 °C로 온도를 낮추었다. 이 때 드라이아이스                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         |                                                                       |                    |
| 4     715 g     813 g     0.211 atm       (a) 위 용기를 900.0 °C에 상당 시간 놔둔 후 평형에 도달하게 하였다. 그 순식간에 다시 영하 200.0 °C로 온도를 낮추었다. 이 때 드라이아이스                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         | 2 780 g 1.00 g 1.04                                                   |                    |
| Ea: (a) 위 용기를 900.0 °C에 상당 시간 놔둔 후 평형에 도달하게 하였다. 그<br>고 순식간에 다시 영하 200.0 °C로 온도를 낮추었다. 이 때 드라이아이스                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         |                                                                       |                    |
| 고 순식간에 다시 영하 200.0 °C로 온도를 낮추었다. 이 때 드라이아이스                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                                       |                    |
| 고 윤식간에 다시 영하 200.0 °C로 온도를 맞추었다. 이 때 드라이아이스                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E <sub>a</sub> :                                                                                        |                                                                       |                    |
| 체 CO₂), 산화칼슘(CaO(s)), 탄산칼슘(CaCO₃(s)) 양은 처음 넣어준 양과                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                       |                                                                       |                    |

(h) Arrhenius 식에서 A는 A는 Frequency Factor(잦음률) 라고 하는 것으로 서 초당 충돌수(collision frequency, z)와 입체인자(steric factor, p)를 곱 한 값(A=zp) 이다. 즉, 이는 유효충돌수를 나타내는 것이다. 위 반응에 대 하여 입체인자를  $1.00 \times 10^{-3}$  이라고 하면 T = 338 K에서 초당 충돌수는얼마인가?

교하였을 때 <u>증가. 감소, 변화 없음</u> 중 어느 것인지 답하시오.


| 실험 | CaCO₃ | CaO | P <sub>CO2</sub> |
|----|-------|-----|------------------|
| 1  |       |     |                  |
| 2  |       |     |                  |
| 3  |       |     |                  |
| 4  |       |     |                  |

| 지(a) + B(a) = C(a) K = 3.50 2A(a) + O(a) = C(a) K = 7.10 (a) 45°C에서 다음 반응의 평충상수((N)는 얼마인가?  ***********************************                                                                                                                                                                                                                                                                                                                                 | 제 실험 1에서 최종 CaO(s)의 질량은 얼마인가? 5. (10+9+15=34점) 45°C에                                                                                      | 서 다음 두 반응의 평형상수는 다음과 같다.                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 최종 CaO의 질량:                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                           |                                                                                 |
| 최종 CaO의 질량:                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a) 45°C에서 다음 반응의                                                                                                                         | 평형상수(K)는 얼마인가?                                                                  |
| K:                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                           | $C(g) + D(g) \rightleftharpoons 2B(g)$                                          |
| K:                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                           |                                                                                 |
| 4. (15점) 황산 월(II) 시료(FeSO <sub>4</sub> (s))를 진공 용기 속에 넣고 920 K로 가열<br>하였더니 다음 두 반응이 일어났다. (b) 위의 세 반응에 대한 K <sub>6</sub> 값을 구하시오.<br>2FeSO <sub>4</sub> (s) ⇌ Fe <sub>2</sub> O <sub>3</sub> (s) + SO <sub>2</sub> (g) + <sup>1</sup> / <sub>2</sub> O <sub>2</sub> (g)<br>당장에 도달한 후 전체 압력은 0.836 atm 이었고, 산소의 부분 압력은<br>0.0275 atm 이었다. 두 반응에 대한 K <sub>6</sub> 를 구하시오. (힌트: 첫 반응이 먼저<br>다 일어난 후, 그 다음에 팽형에 도달했다고 생각하면 됨)  A(g) + B(g) ⇌ C(g) K <sub>p</sub> : | 최종 CaO의 질량:                                                                                                                               |                                                                                 |
| 하였더니 다음 두 반응이 일어났다.  2FeSO₄(s) ⇌ Fe2O₃(s)+ SO₂(g)  SO₃(g) ⇌ SO₂(g) + ½ O₂(g)  팽형에 도달한 후 전체 압력은 0.836 atm 이었고, 산소의 부분 압력은 0.0275 atm 이었다. 두 반응에 대한 K₀를 구하시오. (힌트: 첫 반응이 먼저 다 일어난 후, 그 다음에 팽형에 도달했다고 생각하면 됨)  A(g) + B(g) ⇌ C(g) K₀:  2A(g) + D(g) ⇌ C(g) K₀:  C(g) + D(g) ⇌ 2B(g) Kゥ:  C(g) + B(g) ♀ C(g) Kゥ:  C(g) + D(g) ⇌ 2B(g) Kゥ:  C(g) + B(g) ♀ C(g) Kゥ:  C(g) + D(g) ⇌ 2B(g) Kゥ:                                                                          |                                                                                                                                           | K:                                                                              |
| SO <sub>3</sub> (g) ⇌ SO <sub>2</sub> (g) + ½ O <sub>2</sub> (g) 평형에 도달한 후 전체 압력은 0.836 atm 이었고, 산소의 부분 압력은 0.0275 atm 이었다. 두 반응에 대한 K <sub>p</sub> 를 구하시오. (힌트: 첫 반응이 먼저 다 일어난 후, 그 다음에 평형에 도달했다고 생각하면 됨) $A(g) + B(g) \rightleftarrows C(g) \qquad K_p:$                                                                                                                                                                                                      | ( )                                                                                                                                       | p 값을 구하시오.                                                                      |
| 평형에 도달한 후 전체 압력은 0.836 atm 이었고, 산소의 부분 압력은 0.0275 atm 이었다. 두 반응에 대한 K₀를 구하시오. (힌트: 첫 반응이 먼저다 일어난 후, 그 다음에 평형에 도달했다고 생각하면 됨)  A(g) + B(g) ⇌ C(g) K₀;                                                                                                                                                                                                                                                                                                             |                                                                                                                                           |                                                                                 |
| 0.0275 atm 이었다. 두 반응에 대한 戊률 구하시오. (힌트: 첫 반응이 먼저<br>다 일어난 후, 그 다음에 평형에 도달했다고 생각하면 됨) $A(g) + B(g) \rightleftarrows C(g) \qquad K_p:$                                                                                                                                                                                                                                                                                                                             | $SO_3(g) \rightleftharpoons SO_2(g) + \frac{1}{2}O_2(g)$                                                                                  |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , 그 다음에 평형에 도달했다고 생각하면 됨) $A(g) + B(g) \rightleftarrows C(g) + D(g) \rightleftarrows C(g) + D(g) \rightleftarrows 2B$ (c) 처음에 C(g)와 D(g)를 | (g) K <sub>p</sub> :<br>B(g) K <sub>p</sub> :<br>1.50 atm 만큼 넣고 반응을 시켰더니 (a)의 t |
| 2FeSO <sub>4</sub> (s) ⇌ Fe <sub>2</sub> O <sub>3</sub> (s)+ SO <sub>2</sub> (g) 의 K <sub>p</sub> :<br>SO <sub>3</sub> (g) ⇌ SO <sub>2</sub> (g) + ½ O <sub>2</sub> (g) 의 K <sub>p</sub> :                                                                                                                                                                                                                                                                      | 501 5                                                                                                                                     | 를분률 χ <sub>B</sub> ;                                                            |

6. (25점) 아래와 같은 1100 K 상태의 용기에  $N_2O_5(g)$ 를 넣고 처음에 피스톤의 높이를 재어보니 123.56 cm 이었다.  $N_2O_5(g)$ 는 다음과 같은 분해 반응을 일으켜

$$2N_2O_5(g) \rightleftharpoons 4NO_2(g) + O_2(g)$$

평형에 도달하였을 때 실린더 안에는  $N_2O_5(g)$ ,  $4NO_2(g)$ ,  $O_2(g)$  가 모두 존 재하고 피스톤의 높이는 247.12 cm 로 정확히 2배가 되었다. (피스톤의 무 게는 없고 피스톤과 실린더 사이의 마찰력도 없다고 가정한다.)



위 반응의 Kp와 평형상수(K)를 구하시오.(기체는 이상기체로 가정)

| 71  | 604 | тфы | 8887(N)=       | 101/11/1/1/1/1/1 | 이경기제포 | -10, |
|-----|-----|-----|----------------|------------------|-------|------|
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     | 1/             | •                |       |      |
|     |     |     | Κ <sub>p</sub> | :                | _     |      |
| - 1 |     |     | 17.            |                  |       |      |
|     |     |     |                |                  |       |      |
|     |     |     | K:             |                  | _     |      |

7. (20점) 다음 산화물이 물에 녹을 때 산성, 염기성, 중성 용액 중 어느 것이 되겠는가? 또 그러한 성질을 띠게 만드는 것은 어떠한 화합물이 만들어지기 때문인가? (중성일 경우, 만들어지는 화합물은 빈칸으로 두어도 됨)

| 산화물   | 용액의 성질 | 만들어지는 화합물 |
|-------|--------|-----------|
| CaO   |        |           |
| SO₂   |        |           |
| Cl₂O  |        |           |
| Li₂O  |        |           |
| FeCl₃ |        |           |

8. (10점) 다음의 화합물을 물에 녹여 0.10 M 용액을 만들었을 때 pH가 낮은 것에서 높은 것의 순서로 나열 하시오.

| HI, HF, NaF, NaI |  |  |  |  |  |  |  |
|------------------|--|--|--|--|--|--|--|
|                  |  |  |  |  |  |  |  |
|                  |  |  |  |  |  |  |  |

9. (15점) 아자이드화소듐(NaN $_3$ )은 때때로 물에 녹여 박테리아를 죽이는 데 사용된다.  $0.010~M~NaN_3~$ 용액의 PH를 계산하여라 그리고 용액 있는 모든 화학종들의 농도를 계산하여라.(물 제외) 하드라조산(HN $_3$ )의  $K_a$ 는  $1.9~x~10^{-5}~Olf.$  (힌트:  $N_3^- + H_2O \hookrightarrow HN_3 + OH^-$ )

| 화학종<br>(물 제외, 6종 이하 임) | 농도(M) |
|------------------------|-------|
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |

10. (15점) 다음 각 반응에서 Lewis의 염기에 해당하는 것에 동그라미하여 표시하고 그 염기에서 어느 원자가 비공유(고립)전자쌍을 가지고 있는 지 쓰시오.

| 산-염기 반응<br>(화살표의 왼쪽 화합물 둘 중 염기에 표시)                                | 비공유(고립)전자쌍<br>을 가지고 있는<br>원자 |
|--------------------------------------------------------------------|------------------------------|
| $B(OH)_3(aq) + H_2O(l) \rightleftharpoons B(OH)_4^-(aq) + H^+(aq)$ |                              |
| $Ag^{+}(aq) + 2NH_3(aq) \rightleftharpoons Ag(NH_3)_2^{+}(aq)$     |                              |
| $H_2O(I) + CN^-(aq) \rightleftharpoons HCN(aq) + OH^-(aq)$         |                              |

| 11. | (10점) | HCI | 용액  | 50 | mL가 | 있다.  | 0 | 용액 | 의 | pH가 | 4.000 | 이다. | 용액의 |
|-----|-------|-----|-----|----|-----|------|---|----|---|-----|-------|-----|-----|
| pH≣ | 5.000 | 으 민 | ·들기 | 위히 | 해서는 | 몇 ml | 의 | 물을 | 더 | 넣어0 | i 하는  | 가?  |     |

| ~ '- | 0.000 | <br>71011711 | × |    | 8 01 01 | 0, 271. |  |
|------|-------|--------------|---|----|---------|---------|--|
|      |       |              |   |    |         |         |  |
|      |       |              |   |    |         |         |  |
|      |       |              |   |    |         |         |  |
|      |       |              |   |    |         |         |  |
|      |       |              |   |    |         |         |  |
|      |       |              |   |    |         |         |  |
|      |       |              |   |    |         |         |  |
|      |       |              |   |    |         |         |  |
|      |       |              |   |    |         |         |  |
|      |       |              |   |    |         |         |  |
|      |       |              |   |    |         |         |  |
|      |       |              |   |    |         |         |  |
|      |       |              |   |    |         |         |  |
|      |       |              |   |    |         |         |  |
|      |       |              |   |    |         |         |  |
|      |       |              |   |    |         |         |  |
|      |       |              |   |    |         |         |  |
|      |       | 답:           |   | ml | -       |         |  |

12. (30점)  $K_a = 1.00 \times 10^{-6}$  인 약산 HA 용액 50.0 mL가 있다. 이 용액의 pH가 4.000 이다. 용액의 pH를 5.000로 만들기 위해서는 몇 mL의 물을 더넣어야 하는가?

| _ | 상수 | _ |
|---|----|---|
|---|----|---|

- R (기체상수) = 0.08206 L•atm/(mol•K) = 8.314 J/(mol•K)
- Arrhenius의 식:  $k = Ae^{-\frac{E_a}{RT}}$
- N<sub>2</sub>O<sub>5</sub>의 분자량 = 103 g/mol
- ullet 제곱평균근 속도(root mean square velocity):  ${f u}_{
  m mms}$  =  $\sqrt{rac{3RT}{M}}$  (M:분자량)

답: \_\_\_\_\_ mL

- 이상기체 상태방정식: PV = nRT
- Ca의 원자 질량 = 40.078 amu
- O의 원자 질량 = 15.999 amu