2010년도 화학2 중간고사 (2011년 10월 25일)	
이름: 학번: 학과:	(c) 아세톤과 클로로폼의 혼합은 발열 과정인가 흡열 과정인가?
● 시험시간: 12:30 AM - 14:30 PM ● 휴대전화는 끌 것. ● 지우개, 계산기는 서로 빌려줄 수 없음. ● <u>답은 각 문제에 주어진 네모 안 에 적을 것</u> . 네모 안에 빈 공간이 있는 경우는 풀이 과정을 적으라는 의미임. 빈 공간의 길이와 풀이 과정과는 상관계가 없음. <u>답을 적을 때 항상 단위도 정확히 적을 것</u> . ● 풀이에 필요한 상수나 데이터는 맨 뒤에 있음. ● 문제수: 10 ● Page 수: 4 ● 만점: 265 점	단계 1: Cl ₂ (g) == 2 Cl(g) (빠름)
1. 라우릴 알코올은 코코넛 기름으로부터 얻어지며, 세제를 만드는 데 사용된다. 0.100 kg 벤젠에 5.00 g의 라우릴 알코올을 녹인 용액은 4.1°C에서 언다. 라우릴 알코올의 몰질량은 얼마인가?	
	(b) 반응 중간체를 모두 쓰시오.
	(c) 각 단일단계 반응의 분자도는 얼마인가?
	단계 1의 분자도:
	단계 2의 분자도: 단계 3의 분자도:
	근게 0긔 문자도:
	(d) 속도 결정 단계는 어느 단계인가?
몰질량:	
2. 35°C에서 아세톤((CH ₃)₂CO)의 증기 압력은 360 torr이고, 클로로폼 (CHCl ₃)의 증기 압력은 300 torr이다. 아세톤과 클로로폼은 서로 다음과 길이 약한 수소 결합을 형성한다. Cl Cl Cl→C→H···O→C	(6) 이 메기디즈스포부터 에잉되는 국모 합국은 무엇인기!
Cl CH ₃	
같은 몰수의 아세톤과 클로로폼으로 조성된 용액은 35°C에 서 증기 압력이 250 torr이다.	
(a) 이상 행동을 나타낸다면(이상 용액이라면) 35°C에서 이 용액의 증기 입력은 얼마인가?	
	속도 법칙:
증기 압력:	4. 표는 다음 반응에 대한 연구 자료이다.
	$BF_3 + NH_3 \rightarrow F_3BNH_3$

(b) 이상 용액으로 가정했을 때의 증기 압력과 실제 증기 압력이 차이가 난 다면 그 이유를 설명하시오.

1		

실험	$[BF_3](M)$	$[NH_3](M)$	초기 속도(M/s)
1	0.250	0.250	0.2130
2	0.250	0.125	0.1065
3	0.200	0.100	0.0682
4	0.350	0.100	0.1193
5	0.175	0.100	0.0596

(a) 위 반응의 속도 법칙을 쓰시오.	
속도 법칙:	
(b) 속도 상수는 얼마인가	
속도 상수:	
(c) [BF ₃] = 0.100 M, [NH ₃] = 0.500 M일 때의 초기 반응 속도는 얼마인	생성된 CO(g)의 질량:
);	(b) C는 몇 g 소비 되었는가?
반응 속도:	소비된 C(s)의 질량:
(d) [BF ₈] = 0.0100 M, [NH ₈] = 5.00 M의 농도로 위 반응을 시작하였다. [BF ₈] = 0.00250 M 이 될 때까지 걸리는 시간은 얼마이겠는가?	(c) 만약 이 반응이 보다 작은 용기 속에서 일어났다면 CO의 수득률은 커지겠는가 작아지겠는가? 이유를 적고 답하시오,
	(d) 이 반응은 발열반응인가 흡열반응인가? 이유를 적고 답하시오,
반응 속도:	6. 혜모글로빈(Hb)은 포유 동물 혈액 속의 O2를 운반한다. 각 Hb은 4개 O분자와 결합한다. O2-Hb 결합 반응에 대한 평형 상수는 성인 혜모글로빈에서 너 크다. O2-Hb 결합 능력을 논의하는 데 있
한 등 속도·	어, 생화학자들은 혜모글로빈의 50%가 산소와 결합된 상태를 의미하는 P50 지수라고 하는 척도를 사용한다. 태아 헤모글로빈은 19.0 torr에서 P50 지수
= 0.133 이다.	료를 이용하여, P50 조건에서 다음 수용액 반응에 대한 $\dfrac{K_c(태 \circ)}{K_c(성 인)}$ 비를 점

 $4 O_2(g) + Hb(aq) \rightarrow [Hb(O_2)_4 (aq)]$

- 2 -

확히 구하시오.

 $C(s) + CO_2(g) \rightarrow 2 CO(g)$

(a) 1000 K, 3.00 L 용기 속에 과량의 C와 25.0 g의 CO₂를 반응시켰다면,

CO는 몇 g 생성되는가?

	 8. 다음 산-염기 반응의 생성물을 예측하고, 평형의 방향이 왼쪽으로 또는 오른쪽으로 진행할지를 예측하시오. (a) O²⁻(aq) + H₂O(I) ⇌ (b) CH₃COOH(aq) + HS⁻(I) ⇌ (c) NO₂⁻(aq) + H₂O(I) ⇄
	O ²⁻ (aq) + H ₂ O(I) ⇄ 평형의 방향:
	CH₃COOH(aq) + HS¯(I) ⇄ 평형의 방향:
	NO₂¯(aq) + H₂O(I) ⇄ 평형의 방향:
	9. 어떤 생리학 실험에서 pH 6.5의 완충 용액이 필요하다. 작업 중인 시료들이 약산 H ₂ X (K ₈₁ = 2.0 × 10 ⁻² ; K ₈₂ = 5.0 × 10 ⁻⁷) 또는 그것의 소듐염에 민감하지 않음을 알았다. 1.0M H ₂ X 산 용액 1.0 L와 1.0M NaOH 용액을 이용하여 pH 6.5의 완충 용액을 만들려고 한다.
	(a) 위 완충용액을 만들기 위해 K _{a1} 평형, K _{a2} 평형 중 어느 평형을 이용해야 하는가? 답을 쓰고 그 평형식을 적으시오.
$rac{K_c(태아)}{K_c(청인)}$ =	
7. 다음은 25 °C에서 각 반응에 대한 해리 상수이다.	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
25 °C에서 다음 (i), (ii) 반응에 대한 평형 상수를 구하시오. (i) HCO ₃ -(aq) + OH-(aq) ⇔ CO ₃ ²⁻ (aq) + H ₂ O(I)	(b) 위 완충용액을 만들기 위해 1.0M H₂X 산 용액 1.0 L에 1.0 M NaOH 용액을 첨가하려고 한다. 1.0 M NaOH 용액의 부피는 1.0 L 보다 많아야 하는 가 적어야 하는가?
(ii) $NH_4^+(aq) + CO_3^{2^-}(aq) \rightleftharpoons NH_3(aq) + HCO_3^-(aq)$	
	(c) 위 완충용액을 만들기 위해 1.0 M NaOH 용액을 1.0 L의 H ₂ X 용액에 얼마나 넣어 주어야 하는가? (총 1.0 M NaOH 용액의 부피)
평형 상수: (i) (ii)	

NaOH의 총 부:	П :	
	· -	

10. 22°C, 735 torr에서 NH $_3$ 기체 7.5 L를 0.40 M의 HCI 용액 0.50 L에 넣었다. 모든 NH $_3$ 가 용해되었고, 용액의 부피는 0.50 L로 유지되었다고 가정하면. 용액의 pH는 얼마인가?

pH:

용매	정상 끓는점 (°C)	K_b (°C/ m)	정상 어는점(°C)	$K_f(^{\circ}\mathbf{C}/m)$	
물(H ₂ O)	100.0	0.51	0.0	1.86	
벤젠(C ₆ H ₆)	80.1	2.53	5.5	5.12	
에탄올(C ₂ H ₅ OH)	78.4	1.22	-114.6	1.99	
사염화 탄소(CCl ₄)	76.8	5.02	-22.3	29.8	
클로로폼(CHCl ₃)	61.2	3.63	-63.5	4.68	

1																	2
H																	He
Hydrogon 1.00794																	Helium 4.003
3	4	1										5	- 6	7	8	9	10
Li	Be											В	C	N	o	F	Ne
Lithium	Sun-Sium											Boron	Carbon	Nangon	Overgon	Pluorine	None
6.941	9.012182											10.811	12.0107	14.00674	15.9994	18.9984032	20.1797
													Si	P			
Na	Mg											Al	Sil	Postens	S	Cl	Ar
22.989770	24.3050											26.981538	28.0855	30.973761	32.066	35.4527	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Se	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
79.0983	60.078	5cardum 44.955910	47.867	50.9415	51.9961	54.938049	55.845	Colub 58 931200	Noted 58,6934	63.546	65.39	69.723	72.61	74.92160	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
Rabidium	Strontium	Yarium SE 905E5	2mmin 91,224	Notion	Molybdonum 95.94	Technolium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Astimony	Tellurium 127.60	Indee	Xonen
85.4678 55	87.62 56	57	72	92.90638	74	(98)	76	77	78	79	80	81	118.710	121.760	84	126.90447	131.29
Cs	Ba		Hf	Ta	w		Os		Pt			TI	Pb	Bi	Po		
Coise	Ba	La	Halliam	Tatalan	Tempoton	Re	Omin	Ir	Pit	Au	Hg	Thelium	PD	Bi	Priorium	At	Rn
132.90545	137.327	138,9055	178.49	180,9479	183.84	186.207	190.23	192.217	195.078	196,96655	200.59	204.3833	207.2	208.98038	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
(223)	(226)	(227)	Rathorfordism (261)	(262)	Scatorpum (263)	(262)	(265)	Mointenan (266)	(269)	(272)	(277)						
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu
				Corium 140:116	Pracod-miss 1.80.90765	Nodymian 144.24	Protechism (145)	Sanarium 150.36	Europium 151.964	Galolinium 157.25	Tobian 158 92534	Doprosium 162:50	Holeium 164.93032	Erbium 167.26	Thelium 168.93421	Ynobian 173.04	Entrium 174.967
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
				Th	Pa	Ü	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				Thorium	Protectinium	Unnium	Nonenan	Plannium	Americiam	Curium	Dokelium	Californium	Einspielum	Formium	Mondelevium	Nobelian	Lawrencium
				232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

- R (기체상수) = 0.08206 L•atm/(mol•K) = 8.314 J/(mol•K)
- 1 atm = 760 torr