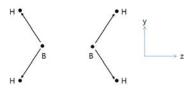
Name	ID	number	
1 Julio	 10	Hullibel	


1. (10) Point groups?

Structure	Point group	Structure	Point group
[Cr(ox) ₃] ⁻³		Cr	
P ₄ O ₁₀ ⁻⁴		$ \begin{array}{c c} A & B & C \\ \hline A & B & A \\ \hline C & D & A \end{array} $	
B ₃ H ₈ H H H H H H H H		d_{z^2}	
N N N N N N N N N N N N N N N N N N N		Br Cl F Cl Br	
H₂O		P	

2. (10) Following is the structure of diborane.

$$H \rightarrow H \rightarrow H \rightarrow H \rightarrow H$$

To derive the terminal B-H stretching vibrational modes, 4 terminal B-H stretchings are depicted as following.

- (a) Find the reducible representation ($\Gamma_{\rm str(B-H)}$) for the 4 terminal B-H stretchings of the figure.
- (b) Reduce the reducible representation ($\Gamma_{\rm str(B-H)}$).
- (c) Sketch the Raman-active vibrational modes and identify their symmetry types.
- (d) Sketch the IR-active vibrational modes and identify their symmetry types.

MOs of NH₃. orbitals of N atom. (a) Derive the group orbitals of three outer H 1s (c) Draw the MO energy level diagram of NH_3 . orbitals by using projection operator method. (d) What is the name of LUMO of NH₃? Sketch the Sketch the group orbitals. shape of LUMO.

3. (15) Following is the method to construct the

(b) What are the symmetry types of the valence

4. (10)

(a) Fill the blanks.

Nomenclature	Structure or Chemical formula
	CI CI CI NH_3 CI NH_3
tetracyanonickelate(II)	formula
	[Co(en) ₂ CO ₃]Br
	H ₃ N O H ₃ N O H ₃ N O H ₃ N O O O O O O O O O O O O O O O O O O O
trans-[Pt(NH ₃) ₂ BrCl]	structure

(b) Draw all the isomers of mer-[M(ABC)(NH₃)(H₂O)Br]. (ABC = H₂N-C₂H₄-PH-C₂H₄-AsH₂ = N—P—As tridentate ligand) Boxes are given more than needed. If there is enantiomer pair(s), draw the pair(s) side by side as in the table.)

enantion	ner pair	enantior	ner pair

5.	(15) Let'	s construct	the MO	energy	level	diagram	of	a	trigonal	bipyramidal	complex	(ML_5)	by	using	ligand
	field the	ory. (L is a	σ –donor	ligand.))										

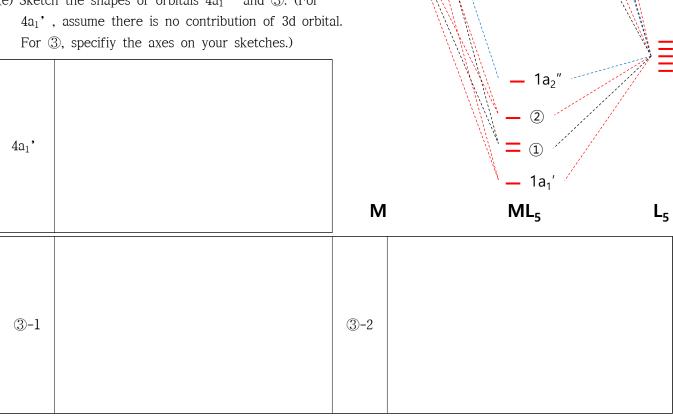
(a) Determine the symmetry types of 3d, 4s, 4p orbitals of metal M.

$3d_{z2}$	3d _{x2-y2}	3d _{xy}	3d _{yz}	$3d_{xz}$	
4 s	4p _x	4p _y	4pz		

(b) Find the reducible representation(Γ) for the 5 σ -donor orbitals of ML₅.

	E	2 C ₃	3 C ₂	$\sigma_{ m h}$	2 S ₃	3 σ _ν
Γ	5					

(c) Reduce the irreducible representation.


_	
· /	

Right is the MO energy level diagram of ML₅.

(d) What are the names of the orbitals?

1)	2	3
(<u>4</u>)	(5)	6

(e) Sketch the shapes of orbitals $4a_1$ ' and ③. (For

3d

3

	5. (10) Let's construct the orbital energy level diagram of a trigonal bipyramidal complex (ML ₅) by using angular overlap model. (L is a π -acceptor ligand.)
	(a) Calculate the strength of σ -interactions of d orbitals.
	(b) Calculate the strength of σ -interactions of ligands. (c) Calculate the strength of π -acceptor interactions of d orbitals.
	(d) Calculate the strength of π -interactions of ligands.
	(e) Draw the orbital energy level diagram of ML_5 .
ſ	

7. (10) Fill the blanks. (All complexes are octahedral.)

Complexe	number of unpaired electrons	LFSE(Δ_{o})	Jahn-Teller Effect (yes or no)	Free ion term symbols of metal ion (ground state)
[Fe(CN) ₆] ⁴⁻				
[Mn(H ₂ O) ₆] ³⁺				
[Co(H ₂ O) ₆] ³⁺				
[Cu(en) ₂ (H ₂ O) ₆] ²⁺				
[Ni(H ₂ O) ₆] ³⁺				

8. (5) Fill the blanks.

term symbol	S	L	number of microstates
,			
	0	1	
³ P			
,			
⁴F			
$^4\mathrm{A}_{2\mathrm{g}}$			
A2g			
$^{2}\mathrm{T}_{2\mathrm{g}}$			

of Cr(NH ₃ for d ³ . (x	The is the UV/VIS absorption $_{3}^{3+}$. Table 1 is the mid is a microstate.) If the electron configurates 2. (as in the box of $M_{\rm S}$	crostate	table $M_S = \frac{1}{2}$	4 ((us out)3)601	ст	2	1			
5)				0				_		
			(!	_ 50 000	cm ⁻¹)	(25 000 c	m ⁻¹) (1	7 000 cm ⁻¹)	1/λ	
				Table	1.					
				Ms	3/2	1/2		-1/2	-3/2	
				M _L 5		X		(2+,2-,1-)		
				3	v	XX	,	XX	v	
(b) Write all the term symbols of free Cr^{3+} .				2	X	XXXX		X X X X	X	
				1	ХХ	X X X X X X		x x x x x x x	хх	
				-1	X X	X X X X X X X X		X X X X X X X X X	X X X X	
				-2	X				Х	
				-3 -4	X	X X X X	ζ	x x x x x x	X	
				-5		X		X		
(c) Fill the b	olanks for Cr ³⁺ .									
				Free ion term symbol			Term symbol(s) in			
							octahedral field			
Ground state										
	ate(s) with the same s y as the ground state	pin								
(d) Mark the	d-electron configure of 4	A _{2g} and	⁴ T _{2g} term	s usiną	garrow	s on the fig	gure below	v and calculate	te LFSE.	
Term	electron configuration	LFS	LFSE(⊿₀)		erm	electron configurat		ion LFSE	LFSE(Δ_0)	
$^4\mathrm{A}_{2\mathrm{g}}$	——————————————————————————————————————			4	${ m T}_{2g}$	— — e _g				
	the transitions corresponding $Cr(NH_3)_6^{3+}$, respectively.	nding t	o the al	osorpti	on ban	ds 1 and	l 2 of t	the UV/VIS	absorptior	
1					2					
(f) Estimate	ligand splitting parameter	$r(\Delta_{\rm o})$ of	Cr(NH ₃) ₆ ³⁺			·				
							A –			
							$\Delta_{\rm o} =$		cm ⁻¹	