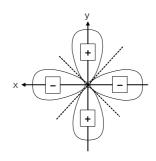
2006년도 무기화학1 중간고사 (2006년 5월 2일) 풀이

297점 만점

1.(2x24 = 484)

원자번호	원소	이름	족	주기
선사인오	기호	기급	(Family)	(Period)
5	В	Boron	13(3A)	2
10	Ne	Neon	18(8A)	2
13	Al	Aluminum	13(3A)	3
54	Xe	Xenon	18(8A)	5
56	Ba	Barium	2(2A)	6
64	Gd (Cadalinina	Lanthani	6
		Gadolinium	de	0


2. (3x8 = 24A)

- (a) [Principal] quantum number determines the major part of the energy of am atom.
- (b) Limitations on the values of the quantum numbers lead to the familiar [aufbau] principle, where the buildup of electrons in atoms results from continually increasing the quantum numbers.
- (c) The [electron configuration] of F is $1s^22s^22p^5$.
- (d) [Formal charge] is the apparent electronic charge of each atom in a molecule, based on the electron-dot structure.
- (e) Sulfur trioxide has three bonding positions (SN=3), with partial double bond character in each. The best positions for the oxygens in this molecule are at the corners of an [equilateral] triangles, with O-S-O bond angles 120°.
- (f) The concept of [electronegativity] was first introduced by Linus Pauling in the 1930s as a means of describing bond energies.
- (g) Experimentally, the polarity of molecules is measured indirectly by measuring the [dielectric constant], which is the ratio of the capacitance of a cell filled with the substance to be measured to the capacitance of the same cell with a vacuum between the electrodes.
- (h) The species CO_3^{2-} , NO_3^{-} , and SO_3 , are [isoelectronic] (have the same electronic structure). Their Lewis structures are identical, except for the identity of the central atom.

3. (4+4+4+10 = 224)

(b)
$$z(x^2-y^2) = 0$$

$$\therefore$$
 z =0, y = x, y = -x

4. (10+12+12+6+6+10+10=66점)

(a) Radial distribution (probability) function = $4\pi r^2 R^2$ 따라서 2s, 2p 오비탈의 radial distribution function은

$$\begin{split} P_{2s} &= 4\pi r^2 R_{2s}^2 \\ &= 4\pi r^2 [\frac{Z}{2a_0}]^3 (2-\sigma)^2 e^{-\sigma} \quad (\sigma = \frac{Zr}{a_0} \text{ 이므로}) \\ &= [\frac{Z\pi}{2a_0}] \sigma^2 (2-\sigma)^2 e^{-\sigma} \\ P_{2p} &= 4\pi r^2 R_{2p}^2 \\ &= \frac{4}{2\pi} \pi r^2 [\frac{Z}{2a_0}]^3 \sigma^2 e^{-\sigma} \quad (\sigma = \frac{Zr}{2a_0} \text{ 이므로}) \end{split}$$

$$= \frac{4}{3}\pi r^2 \left[\frac{Z}{2a_0}\right]^3 \sigma^2 e^{-\sigma} \quad (\sigma = \frac{Zr}{a_0}) \circ \square \vec{\Xi}$$
$$= \frac{Z\pi}{6a_0} \sigma^4 e^{-\sigma}$$

(b)
$$P_{2s} = \left[\frac{Z\pi}{2a_0}\right] \sigma^2 (2-\sigma)^2 e^{-\sigma}$$

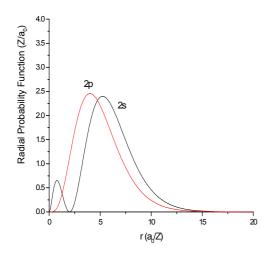
$$\begin{split} \frac{dP_{2s}}{dr} &= \frac{dP_{2s}}{d\sigma} \frac{d\sigma}{dr} \\ &= \left[\frac{Z^2 \pi}{2a_0^2} \right] \{ 2\sigma(2-\sigma)^2 e^{-\sigma} - 2\sigma^2(2-\sigma) e^{-\sigma} - \sigma^2(2-\sigma)^2 e^{-\sigma} \} \\ &= \left[\frac{Z^2 \pi}{2a_0^2} \right] \sigma(2-\sigma) e^{-\sigma} \{ 2(2-\sigma) - 2\sigma - \sigma(2-\sigma) \} \\ &= \left[\frac{Z^2 \pi}{2a_0^2} \right] \sigma(2-\sigma) e^{-\sigma} (\sigma^2 - 6\sigma + 4) \end{split}$$

따라서,
$$\frac{dP_{2s}}{dr}$$
 = 0을 만족시키는 σ 는

$$\sigma = 0, 3 - \sqrt{5}, 2, 3 + \sqrt{5}$$

즉,
$$\frac{dP_{2s}}{dr}$$
 = 0을 만족시키는 r은

$$r = 0$$
, $(3 - \sqrt{5})\frac{a_0}{Z}$, $2\frac{a_0}{Z}$, $(3 + \sqrt{5})\frac{a_0}{Z}$


(c)

r	σ	$P_{2s} = {\frac{Z\pi}{2a_0}} \sigma^2 (2-\sigma)^2 e^{-\sigma}$
0	0	0
$(3 - \sqrt{5})\frac{a_0}{Z}$	$3 - \sqrt{5}$	$0.6524 \frac{Z}{a_0}$
$2\frac{a_0}{Z}$	2	0
$(3+\sqrt{5})\frac{a_0}{Z}$	$3 + \sqrt{5}$	$2.400 \frac{Z}{a_0}$

r	σ	$P_{2p} (= \frac{Z\pi}{6a_0} \sigma^4 e^{-\sigma})$
0	0	0
$4\frac{a_0}{Z}$	4	$2.455 \frac{Z}{a_0}$

(f)

(e)

(g) 위의 그림에서 보는 바와 같이 2s 오비탈은 $r=(3-\sqrt{5})\frac{a_0}{Z}$ 에 있는 radial probability function의 peak로 인해 2p 오비탈에 비해 핵에 더 가까이 접근할 수 있다. 따라서 2p 오비탈이 느끼는 유효 핵전하는 2s 오비탈의 전자에 때문에 발생하는 가리움 효과 (shielding effect) 때

문에 2s 오비탈이 느끼는 유효 핵전하 보다 작다. 오비탈의 에너지 준위는 대략

$$\mathrm{E}=-rac{Z_{eff}^{2}}{n^{2}}\mathrm{R_{H}}$$
 (R_H는 Rydberg constant)로 주어지고 $\mathrm{Z}_{\mathrm{eff(2p)}^{2}}<\mathrm{Z}_{\mathrm{eff(2s)}^{2}}$ 이므로 $\mathrm{E}_{\mathrm{2p}}>\mathrm{E}_{\mathrm{2s}}$ 이다.

5. (2+9+10=21점)

(a) 2족 (또는 2A족)

(b)

 $Sr: 1s^22s^22p^63s^23p^63d^{10}4s^24p^65s^2$

Ba : $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^66s^2$

 $Ra: 1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s^{2}4p^{6}4d^{10}4f^{14}5s^{2}5p^{6}5d^{10}6s^{2}$ $6p^{6}7s^{2}$

(c)

Slater's rule을 고려하면

Sr 5s 전자에 대한 shielding parameter는

 $\sigma_{Sr} = 0.35x1 + 0.85x8 + 1x28 = 35.15$

Ba 6s 전자에 대한 shielding parameter는

 $\sigma_{Ba} = 0.35x1 + 0.85x8 + 1x46 = 53.15$

Ra 7s 전자에 대한 shielding parameter는

 $\sigma_{Ra} = 0.35x1 + 0.85x8 + 1x78 = 85.15$

따라서

Sr 6s 전자가 느끼는 effective nuclear charge는

$$Z_{eff}(Sr) = (Z_{Sr} - \sigma_{Sr})e = 38-35.15 = 2.85$$

Ba 6s 전자가 느끼는 effective nuclear charge는

$$Z_{eff}(Ba) = (Z_{Ba} - \sigma_{Ba})e = 56-53.15 = 2.85$$

Ra 7s 전자가 느끼는 effective nuclear charge는

 $Z_{eff}(Ra) = Z_{Ra} - \sigma_{Ra} = 88 - 85.15 = 2.85$

원자	원자번호	유효핵전하	원자반경 (empirical) (pm)	이온화에너지 (ev)
Sr	38	2.85	200	5.69
Ва	56	2.85	215	5.21
Ra	88	2.85	215	5.28

Slater's rule과 실험적으로 본 원자 반경을 고려하면 IE(Sr)>IE(Ba)~IE(Ra) 일 것으로 예상된다. 그러나 Ra에서 4f 오비탈에 있는 전자 14개의 가리움효과 (shielding effect)는 완전하지 못하다. 그래서 실제로는 Ra의 effective nuclear charge는 2.85보다 크게되고 따라서 IE(Ba)<IE(Ra) 가 된다.

6. (15점)

이온화에너지는 다음의 변화에 대한 내부에너지 변화이고

$$A(g) \longrightarrow A^{+}(g) + e^{-}$$
 IE = ΔU

전자친화도는 다음의 변화에 대한 내부에너지 변화이다.

$$A^{-}(g) \longrightarrow A(g) + e^{-}$$
 EA = ΔU

따라서 원자번호 n인 원자의 전자친화도는 전자가 하나 더 있는 원자 (원자번호 n+1)에서 전자를 하나 떼어내는데 필요한 에너지 (이 때 핵전하는 n) 라고 할 수 있으므로 증감 패턴은 마치 원자번호+1 에 해당하는 원자들의 이온화에너지의 증감 패턴과 같다.

7. (2x15=30점)

분자 또는	Lewis 구조,		분자구조의
이온	형식전하	근거한 분자구조	이름
IF ₃ ²⁻			T-shape
NSCl ₂		CI CITIES N	Trigonal pyramid
OSCl ₂	CI SO CI STORY	CI CI LITTE	Trigonal pyramid
SCN ⁻	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	그리지 말 것	linear (선형)
PCl ₅	CI C	CI	Trigonal bipyramid

8. (10점)

O의 전기음성도가 N의 전기음성도보다 커서 S-Cl의 결합에 있는 전자를 S 쪽으로 더 당기게 되고 이는 Cl-S-Cl 결합 전자쌍의 반발력을 증가시킨다. 따라서, SOCl₂에서의 Cl-S-Cl 각도가 더 크다. (또한 S-Cl 결합길이도 더 짧다.)

9. (10점)

0 0 1- 1- 0 0 1+ 0 2a. 'Ś=C=N: b. 'Ś-C≡N: c. 'S≡C-N: 세 개의 공명 구조 중 일단 c는 형식전하의 수가 크고 charge separation 이 크기 때문에 불안하다. S, C, N 에서 S의 전기음성도가 가장 작은데 S에 형식전하가 -1이 되는 b는 a 보다 불안하다. 따라서 a가 가장 안정된 형태이다.

10. (10+10=20점)

(a) PCl₅에서 중심원자인 P의 3s, 3p_x, 3p_y, 3p_z, 3d_{z2} 오 비탈들이 혼성되어 5개의 sp³d 혼성오비탈을 만든다. 이것 들의 방향은 다음 그림과 같이 P를 중심으로 삼각 상뿔 형태를 취한다.

P의 전자 배치는 $1s^22s^22p^63s^23p^3$ 인데 혼성오비탈을 형성하였을 때는 $1s^22s^22p^6(sp^3d)^5$ 이 되고 각 sp^3d 오비탈에하나씩의 전자가 들어가게 되고 각 sp^3d 오비탈과 Cl

 $(1s^22s^22p^63s^23p^5)$ 에서 전자를 하나를 가지고 있는 오비탈과 중첩을 이루어서 화학결합을 이룬다. 따라서, PCl_5 는 삼각쌍뿔 구조를 한다.

PCl₅
$$\frac{1}{3s}$$
 $\frac{1}{3p}$ $\frac{1}{3p}$ $\frac{1}{3p}$ $\frac{1}{3d}$ $\frac{1}{3d}$ $\frac{1}{sp^3d}$ $\frac{1}{sp^3d}$

(b) N과 P는 같은 15쪽 원소로서 NCl₅가 만들어 진다면 역시 삼각쌍뿔 구조를 할 것이다. 그러나. N은 다섯 개의 Cl을 주위에 갖고 있기에는 너무 작다. 또한 PCl₅처럼 sp³d 혼성오비탈을 만들려면 N의 3s, 3p, 3d 오비탈에서 만들어지고 N (전자배치: 1s²2s²2p³)에 있는 원자가전자 (valence electron) 인 2s²2p³ 전자들이 만들어진 sp³d 혼성오비탈로의 진출 (promotion) 이 일어나야 하는데 그러기에는 에너지 차이가 너무 크다. 따라서 NCl₅는 존재하지 않는다.

11. (3x5=15점)

분자 또는 이온	octet rule을 만족하는 Lewis 구조	octet rule을 만족하지 않지만 더 안정된 형태의 Lewis 구조
SNF ₃	:ÿ: :Ë—s—Ë: :E:	:Ë-\$-Ë: :E:
SO ₂ Cl ₂	:Ö: :Ö: :Ö:	:Ci:
XeO ₃	;ö: :ö-xe-ö:	;ġ=xe=ġ:
SO ₄ ²⁻	:ö: :ö-s-ö: :o:	.ö. .ö. .ö. .ö.
SO ₃ ²⁻	:ö: -ÿÿ:	:Ö————————————————————————————————————

12. (2x6+4=16점)

- (a) a. sp^3 b. sp^3 c. sp^2 d. sp^2 e. sp^2 f. sp
- (b) 12 σ bonds and 4 π bonds