	2 기말고/	사 (2007년 11월 3	80일)		
}					
휴대전화의 전원 여하를 막론하고 풀이에 필요한 (답은 주어진 네! 문제수: 5, 시험	계산기 교육 원은 무조건 1 부정행위 여러 가지 모 안에 적 지: 5쪽	환은 허락하지 않음 ! 끌 것. 감독관의 로 간주 함. 상수 및 데이터는 을 것. 빈 공간에;	눈에 전화기가	<u>e</u> .	
다음표의 빈칸을	: 채우시오 원소	•		주기	
원사번호	기호	이름	족 (Family)	(Period)	
12					
	Al				
57		Iron			
01	Но				
		Francium			
Cr 이온의 3d : [Cr(CN) ₆] ⁴⁻ 에서		- 센장 리간드인가	·, 약한장 리간드	인가?	얼마만큼 증가 또는 감소하는지 스。단위로 표시하라. 또한 기저상태자배치를 화살표로 그려 넣어라.)
[Cr(CN) ₆] ⁴⁻ 의	이름				
[Cr(CN) ₆] ⁴⁻ 의	배위구조	를 그려라.			
[Cr(CN) ₆] ⁴⁻ 의 설명하여라.	구조와 결	합을 원자가결합이	론(Valence Bon	d Theory)으	(h) (g)에 근거하여 [Cr(CN)₅] ^{4~} 의 LFSE은 얼마인지 △。 단위로 표시
	구조와 결	합을 원자가결합이	론(Valence Bon	d Theory)으	(h) (g)에 근거하여 [Cr(CN) ₆] ⁴⁻ 의 LFSE은 얼마인지 스。단위로 표시 ⁸ 스。
	구조와 결	함을 원자가결함이	론(Valence Bon	d Theory)⊆	
	구조와 결	합을 원자가결합이	른(Valence Bon	d Theory)⊆	

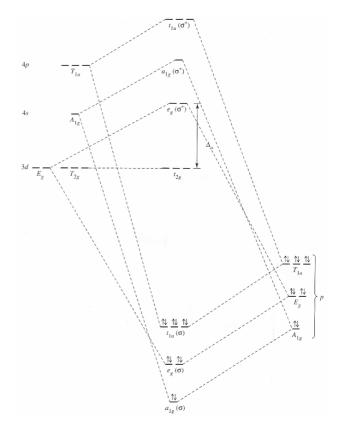

(i) $[Cr(CN)_6]^{4-}$ 의 리간드는 π -acceptor(π -받게) 리간드이다. 본 물음에서 는 리간드의 σ -donor(σ -주게) 오비탈만을 고려하자. 각겹침모델(angular overlap model)을 사용하여 착물에서 (g)와 같이 갈라진 σ -오비탈 사이의에너지 차이(σ -)가 얼마인지 σ -오비탈의 에너지가 얼마만큼 낮아지는지 σ -오비탈은 착물을 형성하면 오비탈의 에너지가 얼마만큼 낮아지는지 σ -오비탈 시하라. 따라서, 전체적으로 자유 Cr 이온과 리간드로 각각 존재할 때와 비교하여 $[Cr(CN)_6]^{4-}$ 착물을 형성하면 얼마만큼의 에너지가 낮아지는지 σ -오바퀴로 표시하라. (관련된 오비탈들의 에너지 준위를 모두 그리고 상관관계도 표시하라.) (표 σ -10-11,12 참조)

그림	
전체적으로 착물을 형성할 때	
낮아지는 에너지	

(j) $[Cr(CN)_6]^{4-}$ 의 리간드는 π -acceptor(π -받게) 리간드이다. 본 물음에서는 리간드의 σ -donor(σ -주게) 오비탈과 π -acceptor 오비탈을 모두 고려하자. 각검침모델(angular overlap model)을 사용하여 착물에서 (g)와 같이 같라진 σ -오비탈 사이의 에너지 차이(Δ_{σ})가 얼마인지 θ_{σ} 와 θ_{π} 단위로 표시하라. 리간드의 σ -오비탈은 착물을 형성하면 오비탈의 에너지가 얼마만큼 낮아지는지 θ_{σ} 와 θ_{π} 단위로 표시하라. 리간드의 π -acceptor 오비탈은 착물을 형성하면 오비탈의 에너지가 얼마만큼 높아지는지 θ_{σ} 와 θ_{π} 단위로 표시하라. 따라서, 전체적으로 자유 Γ 이온과 리간드로 각각 존재할 때와 비교하여 $[Cr(CN)_6]^{4-}$ 착물을 형성하면 얼마만큼의 에너지가 낮아지는지 θ_{σ} 와 θ_{π} 단위로 표시하라. (관련된 오비탈들의 에너지 준위를 모두 그리고 상관관계도 표시하라.) (표 10-11,12 참조)

그림	
전체적으로 착물을 형성할 때	
낮아지는 에너지	
	<u> </u>

(k) 다음 그림은 $[Cr(CN)_{\delta}]^{4^{-}}$ 의 결합을 Ligand Field Theory로 설명할 때 사용하는 분자궤도함수의 에너지 준위도 이다.

 $e_a(\sigma^*)$ 오비탈의 모양을 그려라. (그림1, 표1 참조)

(I) 자유 Cr 이온에 대하여 답하라.

모든 항 기호 중에서 L (total angular	
momentum) 값이 가장 큰 항의 항 기호는? (J	
포함하지 말고 기호를 표시할 것)	
L 값이 가장 큰 항의 항 기호에 포함된	
microstate의 개수	
기저상태 항 기호	
(J 불포함)	
기저상태 항 기호에 포함된 microstate의 수	

(m) [Cr(CN)₆]⁴- 착이온에 대하여 답하라. (그림 11-7 참조)

기저상태 항 기호	
기저상태 항 기호에 포함된	
microstate의 수	
기저상태와 스핀 다중도가 같은	
여기상태 항을 모두 써라.	

(n) 물음(m)의 '기저상태 항 기호에 포함된 microstate' 들 중에서 M_S 값이 -1 인 microstate 들의 전자 배치를 다음 그림 위에 화살표로 그려라. (그 림의 수는 필요 이상으로 많이 그려 놓았으니 필요한 만큼만 그릴 것)

e _g	e _g ———	e _g ———
t _{2g}	t _{2g}	t _{2g}
e _g ————	e _g ———	e _g ———
t _{2g}	t _{2g}	t _{2g}
e _g	e _g ———	e _g ——
t _{2g}	t _{2g}	t _{2g}

(o)	원 2	칙적으로	[Cr(CN) ₆] ⁴⁻	착이온은	몇	개의	흡수선을	가지겠는가?	(실제
는	line	broader	ning	때문에	흡수선들0	l 분	랑해되	지 않음)		

(p) $[Cr(CN)_6]^{4-}$ 착이온에서는 약한 Jahn-Teller Effect 가 일어난다. 정팔면체 구조의 착물에 대한 d-오비탈 갈라짐의 그림(물음 (g) 참조)으로부터출발하여 $[Cr(CN)_6]^{4-}$ 에서 Jahn-Teller Effect 가 일어나는 이유를 쓰고, 또한 tetragonal elongation이 일어날지 혹은 compression이 일어날지를 예측하고 그 이유를 써라. (답은 Jahn-Teller Effect에 의한 d-오비탈 갈라짐을 에너지 준위의 그림으로 그린 것도 있어야 함)

3. 다음의 구조를 그려라.

<i>cis</i> -dichloroethylendiamine platinum(II)	
[Ir(NH ₃) ₃ Cl ₃]	
(두가지 이성질체의 구조)	

- 4. $[VF_6]^{3-}$ 는 14800 cm $^{-1}$ 와 23250 cm $^{-1}$ 에서 두 개의 흡수선을 갖는다. (세번째 흡수선은 자외선 영역)
- (a) 그림 11-7의 여러 Tanabe-Sugano diagram 중에서 해당하는 diagram 을 찾아 diagram 위에 두 흡수선이 어느 상태에서 어느 상태로의 전이에 해당하는지 화살표로 표시하여라.
- (b) △。 값과 Racah parameter(B) 값을 계산하여라.

Δο	cm ⁻¹
В	cm ⁻¹

5. 다음의 데이터가 있다. (그림 11-7 참조)

착물	흡수선 (cm ⁻¹)						
72	Α	В	С				
[Ni(H ₂ O) ₆] ²⁺	8,500	15,400	26,000				
[Ni(NH ₃) ₆] ²⁺	10,750	17,500	28,200				
[Ni(OS(CH ₃) ₂) ₆] ²⁺	7,728	12,970	24,038				
[Ni(dma) ₆] ²⁺	7,576	12,738	23,809				

(a) 흡수선 A, B, C는 각각 어느 상태에서 어느 상태로의 전이에 해당하는 가?

Α	
В	
С	

(b) 각 착물에 대하여 \triangle 。값이 어떻게 되는지 적어라. (계산과정은 생략하라.)

[Ni(H ₂ O) ₆] ²⁺	cm ⁻¹
[Ni(NH ₃) ₆] ²⁺	cm ⁻¹
[Ni(OS(CH ₃) ₂) ₆] ²⁺	cm ⁻¹
[Ni(dma) ₆] ²⁺	cm ⁻¹

(c) (b)의 결과를 바탕으로 위 Ni 착물에 있는 리간드들 사이의 spectrochemical series 의 순서를 부등호를 사용하여 써라.

한 학기 동안 수고하였습니다. 성적은 웹사이트 bh.knu.ac.kr/~leehi 에 12월 3일~8일 사이에 공고될 예정이니 웹사이트를 꼭 확인하기 바랍니다.

표 10-11 각겹침 변수들: 시그마 상호 작용

정팔면체 위치들

정사면체 위치들

삼각쌍뿔 위치들

금속 d 궤도함수의 시그마 상호 작용 (eσ 단위로 표시)

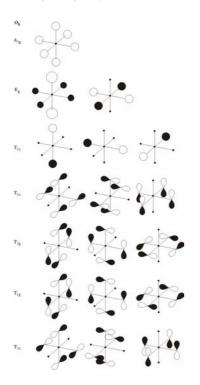
배위수(CN)	모양	위치들		
2	선형	1, 6		
3	삼각형	2, 11, 12		
3	T 모양	1, 3, 5		
4	정사면체	7, 8, 9, 10		
4	평면사각형	2, 3, 4, 5		
5	삼각쌍뿔	1, 2, 6, 11, 12		
5	사각 피라미드	1, 2, 3, 4, 5		
6	정팔면체	1, 2, 3, 4, 5, 6		

리간드 위치	z^2	$x^2 - y^2$	xy	XZ	уz
1	1	0	0	0	0
2	$\frac{1}{4}$	34	0	0	0
3	14	34	0	0	0
4	$\frac{1}{4}$	34	0	0	0
5	1/4	3 4	0	0	0
6	1	0 .	0	0.	0
7	0	0	1/3	$\frac{1}{3}$	1/3
8	0	0	1/3	$\frac{1}{3}$	$\frac{1}{3}$
9	0	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
10	0	0	1/3	$\frac{1}{3}$	$\frac{1}{3}$
11	1/4	3 16	9 16	0	0
12	1 4	3 16	9 16	0	0

표 10-12 각겹침 변수들: 파이 상호 작용

정팔면체 위치들

정사면체 위치들



삼각쌍뿔 위치들

금속 d 궤도함수의 파이 상호 작용

배위수(CN)	모양	위치들		
2	선형	1, 6		
3	삼각형	2, 11, 12		
3	T 모양	1, 3, 5		
4	정사면체	7, 8, 9, 10		
4	평면사각형	2, 3, 4, 5		
5	삼각쌍뿔	1, 2, 6, 11, 12		
5	사각 피라미드	1, 2, 3, 4, 5		
6	정팔면체	1, 2, 3, 4, 5, 6		

		(e _π 단위로 표시	1)		
리간드 위치	z^2	$x^2 - y^2$	xy	xz	yz
1	0	0	0	1	1
2	0	0	1	1	0
3	0	0	1	0	1
4	0	0	1	1	0
5	0	0	1	0	1
6	0	0	0	1 ·	1
7	2/3	2/3	2 9	2 9	2 9
8	2/3	2/3	29	29	2 9
9	2/3	2/3	2 9	2 9	2 9
10	2 3	2/3	$\frac{2}{9}$	<u>2</u>	<u>2</u>
11	0	34	1/4	$\frac{1}{4}$	34
12	0	34	$\frac{1}{4}$	1/4	3 4

70

O _h (m3m)	E	$8C_3$	$6C_2$	$6C_4$	$-\frac{3C_2}{(=C_4^2)}$	i	654	$8S_6$	$3\sigma_h$	$6\sigma_d$	h :	- 48
A _{1g}	1.	1	1	1	1	-1	-1	1	1	1		$x^2 + y^2 + z^2$
N ₂₀	1	1	-1	-1	15	- 1	-1	.1	1.	~1.		
Eg	2	-1	0	0	2	2	0	-1	2	0		$(2x^2 - x^2 - y^2 - y^2 + x^2 - y^2)$
r _{ig}	3	0	-1	1	-1	3	1	0	-1	-1	(R_i, R_i, R_c)	
r _{2g}	3	0	1	-1	-1	3	-1	0	-1	1		(xy, yz, zy)
\i.	19	1	1	1	1	-1	-1	-1	-1	-1		
N ₂₊	1	1	-1	-1	1	-1	1.0	-1	-10	:1		
1	2	-1	0	0	2	-2	0	1	-2	0		
Γ _{tu}	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
24	3	0	1	-1	-1	-3	117	0	13	-1		

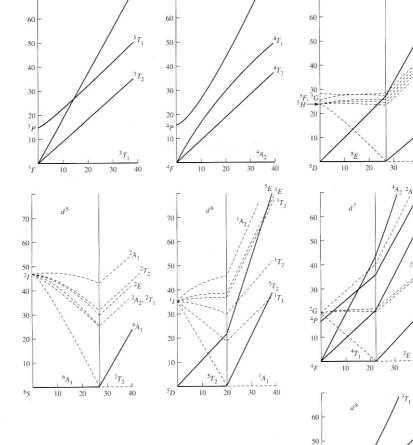


그림 11-7 팔면체 리간드장에서의 d^2-d^8 전자 배치에 대한 단순화시킨 Tanab-Sugano 도표들. 모든 항은 g 대칭을 갖기 때문에 단순하게 나타내기 위하여 g를 생략하였다. 축의 양은 이 절에서 이미 정의한 바와 같다(K. F. Purcell and J. C. Kotz, *Inorganic Chemistry*, W. B. Saunders, Philadelphia, 1977, pp. 584-585. 1977 by Saunders College Publishing, a division of Holt, Rinehart and Winston, Inc).

30

10