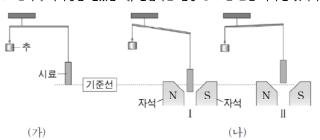
학번_____ 이름____

- 시험시간 7:00 9:30PM
- 학생들 사이의 계산기 교환은 허락하지 않음.
- 휴대전화의 전원은 무조건 끌 것. 감독관의 눈에 전화기가 보이면 이유 여하를 막론하고 부정행위로 간주 함.
- 답은 주어진 네모 안에 적을 것. 빈 공간에는 풀이 과정을 적을 것. 빈 공간의 크기와 풀이 과정의 길이는 상관 관계가 없음.
- 문항수: 10, 쪽수: 6 (문제지 5 + 별지 1)
- 1. Ethylenediamine (en)과 Co²⁺, Ni²⁺, Cu²⁺ 사이에서 일어나는 반응의 평형상수 값(K) 은 다음과 같다. (M = Co, Ni, Cu)

$$\begin{split} [M(H_2O)_6]^{2^+} + & \text{en} &\rightleftarrows [M(\text{en})(H_2O)_4]^{2^+} + 2H_2O & \textit{K}_1 \\ [M(\text{en})(H_2O)_4]^{2^+} + & \text{en} &\rightleftarrows [M(\text{en})_2(H_2O)_2]^{2^+} + 2H_2O & \textit{K}_2 \\ [M(\text{en})_2(H_2O)_2]^{2^+} + & \text{en} &\rightleftarrows [M(\text{en})_3]^{2^+} + 2H_2O & \textit{K}_3 \end{split}$$

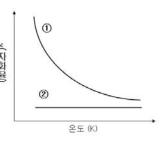
ion	$\log K_1$	$\log K_2$	$\log K_3$
Co ²⁺	5.89	4.83	3.10
Ni ²⁺	7.52	6.28	4.26
Cu ²⁺	10.55	9.05	-1.0


(a) Co^{2+} 와 Ni^{2+} 에서 $K_1 > K_2 > K_3$ 인 이유를 설명하라.

(b) Cu^{2+} 에서 K_3 반응은 평형이 정방향 또는 역방향 중 어느 쪽으로 치우

쳐	있는가?	

(c) (b)의 결과와 같이 관찰되는 이유를 설명하라.


2. 아래 그림 (r)는 시료와 추로 저울의 균형을 맞춘 것을, (r)는 (r)의 시료 근처에 자기장을 걸었을 때, 관찰되는 현상 r 또는 r를 나타낸 것이다.

아래 표는 시료에 따른 (나)의 현상이다.

시료	(나)의 현상	시료	(나)의 현상
K ₂ [NiCl ₄]	I	K ₂ [Ni(CN) ₄]	II

옆의 그림은 $K_2[NiCl_4]$ 와 $K_2[Ni(CN)l_4]$ 에 대하여 온도에 따른 자화율(magnetic susceptibility)을 측정한 자료이다.

(a) 시료에 따른 자기적 성질, 자화율이 모두 맞는 것은?(객관식.ㄱ~ㄹ 중 정답에 동그라미)

	K ₂ [N	liCl4]	K ₂ [Ni(CN) ₄]		
	자기적 성질	자화율	자기적 성질	자화율	
٦	상자기성	1	반자기성	2	
L	상자기성	2	반자기성	1	
ㄷ	반자기성	1	상자기성	2	
ㄹ	반자기성	2	상자기성	①	

(b) $K_2[NiCl_4]$ 와 $K_2[Ni(CN)_4]$ 에서 Ni의 산화수(n)는 같다. 산화수와 d-전 자의 개수는?

산화수		d-전자 개수	
-----	--	---------	--

(c) $K_2[NiCl_4]$ 과 $K_2[Ni(CN)_4]$ 의 배위결합과 자기적 성질을 원자가결합이론 (Valence Bond Theory)으로 설명할 때, 각 화합물에서 Ni에 형성되는 혼성오비탈 이름은? 그리고 각 착이온의 배위구조는?

화합물	K₂[NiCl₄]	K₂[Ni(CN)₄]
혼성오비탈		
배위구조		

(d) $K_2[NiCl_4]$ 과 $K_2[Ni(CN)_4]$ 의 자기적 성질을 결정장이론(Crystal Field Theory)으로 설명할 때, 각 화합물에서 Ni의 d-오비탈 갈라짐을 자세히 그리고(drawing) 전자배치를 화살표로 표시하라.

화합물	K ₂ [NiCl ₄]	K ₂ [Ni(CN) ₄]
d-오비탈 갈라짐과 전자배치		

l 개이다. :		림에 표시하 중간 orbital	

TABLE 10.10 Angular Overlap Parameters: Sigma Interactions

1z 3

I	igand Positions for Co. Geometries	pordination	Sigma Inte		ions (in u		of e_{σ})	
CN	Shape	Positions	Ligand Position	z ²	x ² -y ²	ху	ΧZ	yz
2	Linear	1, 6	1	1	0	0	0	0
3	Trigonal	2, 11, 12	2	$\frac{1}{4}$	$\frac{3}{4}$	0	0	0
3	T shape	1, 3, 5	3	$\frac{1}{4}$	$\frac{3}{4}$	0	0	0
4	Tetrahedral	7, 8, 9, 10	4	$\frac{1}{4}$	3 4	0	0	0
4	Square planar	2, 3, 4, 5	5	14	34	0	0	0
5	Trigonal bipyramidal	1, 2, 6, 11, 12	6	1	0	0	0	0
5	Square pyramidal	1, 2, 3, 4, 5	7	0	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
6	Octahedral	1, 2, 3, 4, 5, 6	8	0	0	3	1/3	$\frac{1}{3}$
			9	0	0	1/3	1/3	$\frac{1}{3}$
			10	0	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
			11	1/4	3	9	0	0

111

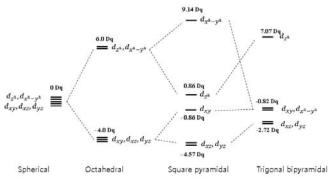
 $\frac{3}{16}$

 $\frac{9}{16}$ 0 0

TABLE 10.11 Angular Overlap Parameters: Pi Interactions

Octahedral Positions	Tetrahedral Positions	Trigonal Bipyramidal Positions
$\begin{array}{c} 4 - M \frac{y}{x} \\ 5 - 6 \end{array}$	8 M	$12 \xrightarrow{111} M \xrightarrow{2} 2$
Ligand Positions for Geometr		Pi Interactions (in units of e_{π}) Metal d Orbital

12


	Geometries		Metal a Orbital						
CN	Shape	Positions	Ligand Position	z ²	x ² -y ²	ху	ΧZ	yz	
2	Linear	1,6	1	0	0	0	1	1	
3	Trigonal	2, 11, 12	2	0	0	1	1	0	
3	T shape	1, 3, 5	3	0	0	1	0	1	
4	Tetrahedral	7, 8, 9, 10	4	0	0	1	1	0	
4	Square planar	2, 3, 4, 5	5	0	0	1	0	1	
5	Trigonal bipyramidal	1, 2, 6, 11, 12	6	0	0	0	1	1	
5	Square pyramidal	1, 2, 3, 4, 5	7	$\frac{2}{3}$	$\frac{2}{3}$	<u>2</u>	29	2 9	
6	Octahedral	1, 2, 3, 4, 5, 6	8	$\frac{2}{3}$	$\frac{2}{3}$	29	2 9	29	
			9	2/3	2/3	29	29	2 9	
			10	$\frac{2}{3}$	2/3	29	29	29	
			11	0	34	$\frac{1}{4}$	14	$\frac{3}{4}$	
			12	0	34	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{3}{4}$	

4. 많은 경우에 6배위 정팔면체 전이금속 착화합물의 리간드 치환반응 (ligand substitution reaction)은 전이 상태에서 5배위수가 되는 해리 메커 니즘(dissociative mechanism)을 따른다.

$$ML_6 + X \rightarrow [ML_5]^{\dagger} + X + L \rightarrow ML_5X + L$$

그림은 각 결정장(crystal field)에서의 d-오비탈 에너지 준위를 Dq 단위로 표시한 것이다. (10 Dq = Δ_0)

(아래 그림이 잘 보이지 않을 경우, 별지 참조)

(a) 위의 ML_6 착화합물에서 금속이 저스핀(low-spin) d^6 전자배치를 한다면 리간드장 안정화에너지(ligand field stabilization energy, LFSE)는 얼마인가?(Dq 단위)

(b) 전이 상태($[ML_5]^+$)에서 가질 수 있는 두 가지 가능한 구조를 그리고, 각 구조의 이름과 구조가 속한 점군(point group)을 쓰고 그 점군에 해당하는 지표표(character table)를 선택하라.

		E	2C ₃	3C ₂	σ_h	2S ₃	$3\sigma_{ m v}$		
	A ₁ '	1	1	1	1	1	1		$x^2 + y^2, z^2$
	A_2'	1	1	-1	1	1	-1	R_z	
1	E'	2	-1	0	2	-1	0	(x, y)	(x^2-y^2,xy)
	A_1 "	1	1	1	-1	-1	-1		
	A_2 "	1	1	-1	-1	-1	1	Z	
	E"	2	-1	0	-2	1	0	(R_x, R_y)	(xz, yz)

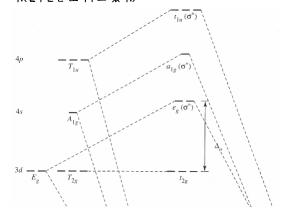
	-	Ε	2C ₄	C ₂	$2\sigma_{ m v}$	$2\sigma_d$		
	A ₁	1	1	1	1	1	Z	$x^2 + y^2, z^2$
	A_2	1	1	1	-1	-1	R_Z	
(2)	B_1	1	-1	1	1	-1		$x^2 - y^2$
•	B_2	1	-1	1	-1	1		xy
	Ε	2	0	-2	0	0	$(x, y), (R_x, R_y)$	(xz, yz)

구조의 그림	구조의 이름	점군	지표표 (①, ② 중 선택)

(c) (b)의 두 가지 구조에 대하여 각 결정장(crystal field)에서 d-오비탈의에너지 준위도를 그리고, 주어진 지표표와 에너지준위도를 참조하여 그림에각 오비탈의 정확한(공식) 이름을 쓰시오.

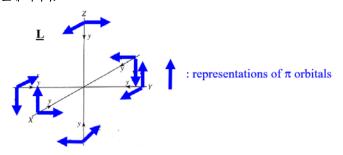
구조의 이름	
d-오비탈 에너지 준위도	

(d) (b)의 두 구조에 대하여 각각 LFSE는 얼마인가 계산하시오. 이로부터 팔면체 ML_6 에서 해리 메커니즘을 따라 (b)의 두 전이 상태로 될 때 각각 ligand field activation energy (LFAE)는 얼마인지 구하시오. LFAE 만을 고려하였을 때, 해리 메커니즘에서는 (b)의 두 구조 중 어느 것을 선호하겠는지 답하고 설명하시오.


구조의 이름	
LFSE (Dq)	

LFAE (Dq)	
전이상태 에서 선호하는 구조와 그 이유	

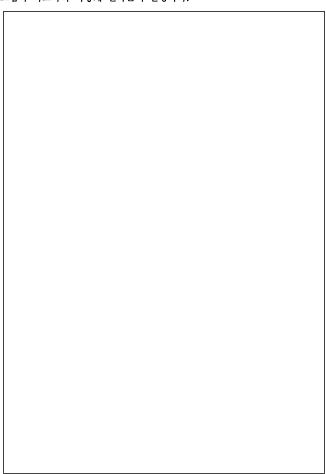
(e) (b)의 각 구조 대하여 magnetic moment를 구하여라. ($\mu_{\rm B}$ 단위로, μ = $2\sqrt{S(S+1)}$ $\mu_{\rm B}$, $\mu_{\rm B}$ 는 Bohr magneton)


구조의 이름	
magnetic moment (μ _B)	

5. 아래 그림은 6배위 정팔면체 배위구조의 착화합물(ML_6)에서 σ -interaction 만 고려하였을 때 분자궤도함수의 에너지 준위를 나타낸 것이 다.(일부분만 보여주고 있다.)

(a) t_{2g} 오비탈의 모양을 그려라.(3개)

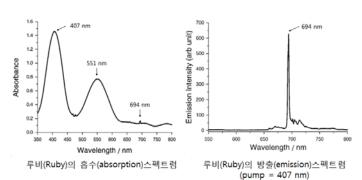
(b) ML_6 에서 금속과 리간드 사이의 π -interaction을 알아보고자 한다. 리간드의 π -오비탈 12개를 아래와 같이 화살표로 표시하였을 때, 이에 대한 가약표현($\Gamma\pi$)은 $\Gamma\pi$ = T_{1g} + T_{2g} + T_{1u} + T_{2u} 이다. $\Gamma\pi$ 의 지표값을 아래표에 적어라.

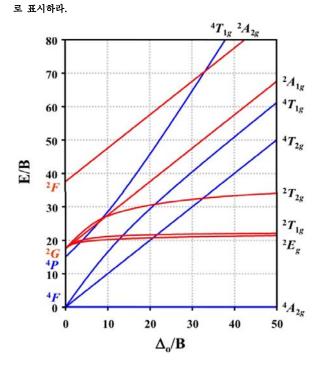

7. O_h symmetry를 가지고 있는 착화합물이 다음의 전자 배치를 할 때 A, E, T 중 어느 state에 해당하는지 써라.

$t_{2g}^{4}e_g^{2}$	t_{2g}^6	
$t_{2g}^3 e_g^3$	t_{2g}^5	
e _g		

8. 루비(Ruby)는 알루미나(Al $_2$ O $_3$)의 Al^{3+} 자리에 Cr^{3+} 가 결점으로 들어가 있는 보석이다. 루비는 빨간색으로 보이는데 보통 물감처럼 빨간색으로 보

O_h	Ε	$8C_3$	$6C_2$	6C ₄	$3C_2 (= C_4^2)$	i	$6S_4$	8S ₆	$3\sigma_h$	$6\sigma_d$
Γ_{π}										


(c) 리간드 L이 π -donor 또는 π -acceptor 리간드 일 때 각각 Δ_0 가 위 그림과 비교하여 어떻게 변하는지 설명하라.


6. 다음에 대하여 바닥상태 항기호를 써라.(별지 Tanabe-Sugano 도표 참 조)

		Octahe	edral	Tetrahedral
	Free Ions	Compl	exes	Complexes
Cu ²⁺	$^{2}\mathrm{D}$	$^2\mathrm{E}_{\mathbf{g}}$		$^2\mathrm{T}_2$
V ³⁺		_		
Cr ³⁺				
Mn ²⁺		high-spin	low-spin	
Mn-				
Fe ²⁺				
0.				
Ni ²⁺				

이는 것뿐만 아니라, 자세히 보면 Ruby에서 빨간색의 빛이 방출되어 나오는 것을 볼 수 있어서 아름답게 보인다. 또한 루비는 루비 레이저의 소재로도 쓰인다. 다음 그림은 루비의 흡수스펙트럼과 방출스펙트럼으로 스펙트럼은 Cr³⁺ 때문에 발생한다.

(a) 흡수스펙트럼에 있는 407, 551, 694 nm 흡수선은 각각 어느 항에서 어느 항으로의 전이에 해당하는지 아래 Tanabe-Sugano diagram에 화살표

(b) 694 nm 흡수선은 407, 551 nm 흡수선에 비해 신호세기가 매우 약하	
다. 그 이유는 무엇인가?	
(c) 루비에서 Cr³+의 리간드장갈라짐에너지(Δ₀)는 cm⁻¹ 단위로 얼마인가?	
d) 위의 오른쪽그림에서 407 nm의 빛으로 루비를 여기(excited)시켰을	10. MnO4 ⁻ 는 사면체 배위 구조를 가진다. MnO4 ⁻ 의 흡수 스펙트럼을
대 694 nm의 빛이 방출되는 mechanism을 에너지 준위도를 이용하여 설명	하면 18,500 cm ⁻¹ 와 32,200 cm ⁻¹ 에서 두 개의 강한 흡수선이 보인다.
하시오.	
	다음은 4면체 착화합물에서의 MO 에너지 준위도이다.
	=
	//.
	t ₂ =
	a,
	2t2
	e + t ₂
	• \ \
	a ₁ + t ₂
	\
	1a ₁
	M ML_4 L_4
	MnO4 ⁻ 의 두 흡수선으로부터 Δ _t 를 구하고, 그 근거를 설명하라
 어떤 4배위 사각평면 착화합물에서 리간드 치환반응의 반응속도가 아래 	
아 전 4배가 자작청인 역약합들에서 더신드 자원인공의 인공목도가 하네 아 같았다. 이에 대하여 적당한 반응 mechanism을 제안하라.	
가 끝았다. 막게 돼이꾸 먹 6년 현장 Inechamsing 제한이다.	
$ML_3X + Y \rightarrow ML_3Y + X$	
rate = $k_1[ML_3X] + k_2[ML_3X][Y]$	
1	1